
A REAL-TIME STRATEGY AGENT FRAMEWORK AND STRATEGY
CLASSIFIER FOR COMPUTER GENERATED FORCES

THESIS

Lyall Jonathan Di Trapani, Captain, USAF

AFIT/GCS/ENG/12-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States

AFIT/GCS/ENG/12-04

A REAL-TIME STRATEGY AGENT FRAMEWORK AND STRATEGY
CLASSIFIER FOR COMPUTER GENERATED FORCES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Insitute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Lyall Jonathan Di Trapani, M.Eng.E.E., B.S.E.E.

Captain, USAF

June 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/12-04

A REAL-TIME STRATEGY AGENT FRAMEWORK AND STRATEGY
CLASSIFIER FOR COMPUTER GENERATED FORCES

Lyall Jonathan Di Trapani, M.Eng.E.E., B.S.E.E.
Captain, USAF

Approved:

// signed // 07 June 2012

Gary B. Lamont, PhD (Chairman) Date

// signed // 07 June 2012

Douglas D. Hodson, PhD (Member) Date

// signed // 07 June 2012

Maj Kennard R. Laviers, PhD (Member) Date

Abstract

This research effort is concerned with the advancement of computer generated forces

AI for Department of Defense (DoD) military training and education. The vision of this

work is agents capable of perceiving and intelligently responding to opponent strategies in

real-time. Our research goal is to lay the foundations for such an agent using the Balanced

Annihilation real-time strategy (RTS) game running on the Spring engine. To achieve this

goal, we design and implement an extensive RTS AI agent framework and a system to

produce strategy classifiers. Six research objectives are defined: 1) Formulate a strategy

definition schema effective in defining a range of RTS strategies. 2) Define eight balanced

strategies using the strategy definition schema. 3) Design a real-time agent framework

that, when given a strategy definition expressed via our strategy definition schema, plays

the game according to the defined strategy. 4) Generate a quality RTS data set. 5) Create

an accurate and fast executing strategy classifier. 6) Find the best counter-strategies for

each strategy definition.

The agent framework is used to play the eight strategies against each other and

generate a data set of game observations. To classify the data, we first perform feature

reduction using principal component analysis or linear discriminant analysis. Two

classifier techniques are employed, k-means clustering with k-nearest neighbor and

support vector machine. The classifiers are tested using 5-fold cross-validation. The

resulting classifier is 94.1% accurate with an average classification execution speed of

7.14 µs when running on a budget-class desktop personal computer.

Our innovative agent framework and strategy classifier have successfully laid the

foundations for a dynamic strategy agent. Once the dynamic strategy agent concept is

validated, these methodologies and techniques can be ported to computer generated forces

of next-generation DoD wargames to enhance military training and education.

iv

Dedicated to my lovely wife.

v

Acknowledgments

I would like to thank Dr. Lamont for his guidance, patience and encouragement

throughout this research effort. It was an honor working under him.

Lyall Jonathan Di Trapani

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgments . vi

List of Figures . xi

List of Tables . xiii

List of Abbreviations . xvii

1 Introduction . 1
1.1 Military Wargames and RTS Games . 1
1.2 Academic Interest in RTS Game AI . 1
1.3 Research Goal . 2
1.4 Research Objectives . 3
1.5 General Approach . 4
1.6 Thesis Overview . 5

2 Background in RTS Games . 7
2.1 Introduction . 7
2.2 Wargames . 7
2.3 RTS . 8
2.4 The Levels of RTS AI . 10

2.4.1 Unit-level AI . 10
2.4.2 Tactical-level AI . 10
2.4.3 Strategic-level AI . 10

2.5 Definition of RTS Terms . 12
2.6 RTS AI Agent Problem Solving . 14
2.7 General RTS Strategies . 15

2.7.1 Rush . 15
2.7.2 Blitz . 16
2.7.3 Turtle . 16
2.7.4 Expansion . 17
2.7.5 Super-weapon . 17

2.8 AI . 18
2.8.1 Weak AI in RTS Agents . 18

vii

2.8.2 Statistical Machine Learning . 19
2.9 Chapter Summary . 19

3 Previous AI Approaches in RTS . 21
3.1 Introduction . 21
3.2 Reinforcement Learning . 21
3.3 Dynamic Scripting . 22
3.4 Monte-Carlo planning . 22
3.5 Case-based Planning and Reasoning . 23
3.6 Bayesian Networks . 24
3.7 Evolutionary Algorithm . 24
3.8 Modular, Integrated Agent . 25
3.9 Opponent Modeling . 25
3.10 Chapter Summary . 27

4 Agent Framework . 28
4.1 Introduction . 28
4.2 Strategic Constructs . 28

4.2.1 Strategy Definition schema . 28
4.2.2 Strategies . 29
4.2.3 Infantry Rush . 30
4.2.4 Tank Rush . 30
4.2.5 Blitz . 31
4.2.6 Defended Artillery . 31
4.2.7 Bomber . 32
4.2.8 Anti-air . 33
4.2.9 Expansion . 34
4.2.10 Turtle . 35
4.2.11 Strategy Definitions . 36

4.3 Making Strategic Decisions . 37
4.4 Groups Tactics . 38
4.5 Agent Architecture . 39

4.5.1 Percepts . 39
4.5.2 Agent Actions . 40
4.5.3 Spring Engine AI Interface . 41
4.5.4 Agent Design . 44
4.5.5 Grid world . 50

4.6 Constraints . 51
4.7 Advancement of AFIT Research in RTS AI 52
4.8 Balanced Annihilation . 53
4.9 Chapter Summary . 53

viii

5 Real-time Strategy Classification . 54
5.1 Introduction . 54
5.2 Data Collection . 55
5.3 Data Pre-processing . 57
5.4 Feature Reduction . 59

5.4.1 Principal Component Analysis . 59
5.4.2 Linear Discriminant Analysis . 60

5.5 Building a Classifier . 60
5.5.1 K-nearest Neighbor on K-means 60
5.5.2 Support Vector Machine . 61

5.6 Learning Counter-Strategies . 61
5.7 Chapter Summary . 62

6 Design of Experiments . 63
6.1 Introduction . 63
6.2 Wins-losses and Counter-strategies . 64
6.3 Classifier Testing using 5-Fold Cross-validation 66
6.4 Classifier Accuracy . 68
6.5 Classifier Execution Speed . 69
6.6 Properties of Most Accurate Classifier and Fastest Executing Classifier . . . 70
6.7 Chapter Summary . 72

7 Results and Discussion . 73
7.1 Introduction . 73
7.2 Win-loss Results . 73
7.3 Counter-strategies . 76
7.4 Objective 1 Requirements . 77
7.5 Classifier Accuracy . 80
7.6 Classifier Execution Speed . 81
7.7 Properties of Most Accurate Classifier . 82
7.8 Properties of Fastest Executing Classifier 86
7.9 Strategy Observation Fidelity . 89
7.10 Chapter Summary . 91

8 Conclusion and Future Work . 92
8.1 Conclusion . 92
8.2 Future Work . 96

8.2.1 Dynamic Strategy Agent . 96
8.2.2 Design of Experiments . 96
8.2.3 Counter-Strategies . 97
8.2.4 Other Thoughts on Future Work 98

8.3 Final Remarks . 98

ix

Appendix A: Sequence Diagrams . 100

Appendix B: Complete Experiment Results . 106

Bibliography . 131

Vita . 136

x

List of Figures

Figure Page

1.1 Agent Sending Gunships to Attack Opponent 2

1.2 Research Objective Dependencies . 3

1.3 Heavily Defended Base Constructed by Agent Playing The Turtle Strategy . . . 4

1.4 Agent Constructing Base Defenses . 6

4.1 Agent Playing the Infantry Rush Strategy in BA 30

4.2 Agent Playing the Tank Rush Strategy in BA 31

4.3 Agent Playing the Blitz Strategy in BA . 32

4.4 Agent Playing the Defended Artillery Strategy in BA 33

4.5 Agent Playing the Bomber Strategy in BA . 34

4.6 Agent Playing the Anti-air Strategy in BA . 34

4.7 Agent Playing the Expansion Strategy in BA 35

4.8 Agent Playing the Turtle Strategy in BA . 36

4.9 Agent and Environment . 39

4.10 Spring Engine Agent Plugin Architecture . 41

4.11 Shared Object Agent Framework . 43

4.12 Classes of Agent Framework . 45

4.13 Class Diagram . 46

4.14 Package Diagram . 48

4.15 Use Case Diagram . 49

6.1 Experiment Process . 67

7.1 Accuracy over Time for Experiment: Econ – None – SVM 85

7.2 Accuracy over Time for Experiment: No Econ – LDA – Knn 88

A.1 Update Sequence Diagram . 100

A.2 Unit Created Sequence Diagram . 101

xi

A.3 Unit Finished Sequence Diagram . 101

A.4 Unit Idle Sequence Diagram . 102

A.5 Unit Damaged Sequence Diagram . 103

A.6 Unit Destroyed Sequence Diagram . 103

A.7 Enter Line of Sight Sequence Diagram . 104

A.8 Leave Line of Sight Sequence Diagram . 104

A.9 Enemy Destroyed Sequence Diagram . 105

A.10 Enemy Finished Sequence Diagram . 105

B.1 Accuracy over Time for Experiment: Econ – None – Knn 124

B.2 Accuracy over Time for Experiment: Econ – None – SVM 125

B.3 Accuracy over Time for Experiment: Econ – PCA – Knn 125

B.4 Accuracy over Time for Experiment: Econ – PCA – SVM 126

B.5 Accuracy over Time for Experiment: Econ – LDA – Knn 126

B.6 Accuracy over Time for Experiment: Econ – LDA – SVM 127

B.7 Accuracy over Time for Experiment: No Econ – None – Knn 127

B.8 Accuracy over Time for Experiment: No Econ – None – SVM 128

B.9 Accuracy over Time for Experiment: No Econ – PCA – Knn 128

B.10 Accuracy over Time for Experiment: No Econ – PCA – SVM 129

B.11 Accuracy over Time for Experiment: No Econ – LDA – Knn 129

B.12 Accuracy over Time for Experiment: No Econ – LDA – SVM 130

xii

List of Tables

Table Page

4.1 Strategy Definition Schema . 29

4.2 Strategy Abbreviations . 36

4.3 Strategy Definitions . 37

4.4 Engine Event Table . 40

4.5 Spring Skirmish AI Interface Files . 42

5.1 Map Names . 56

5.2 Data Collection Times . 57

6.1 Objective 1 Requirements . 65

6.2 5-fold Cross-validation . 66

7.1 Number of Wins for each Match-up on the Small Map 74

7.2 Number of Wins for each Match-up on the Medium Map 74

7.3 Number of Wins for each Match-up on the Large Map 74

7.4 Number of Wins for each Match-up across all Maps 75

7.5 Number of Winning Records Per Map . 75

7.6 Counter-strategies . 76

7.7 Objective 1 Requirements . 77

7.8 Accuracy Comparison Table . 80

7.9 Overall Accuracy Means . 80

7.10 Overall Accuracy Standard Deviations . 80

7.11 Mean of Execution Speed (µs) . 82

7.12 Standard Deviation of Execution Speed (µs) 82

7.13 Overall Accuracy for Experiment: Econ – None – SVM 83

7.14 Confusion Matrix for Experiment: Econ – None – SVM on Small Map 83

7.15 Confusion Matrix for Experiment: Econ – None – SVM on Medium Map . . . 84

xiii

7.16 Confusion Matrix for Experiment: Econ – None – SVM on Large Map 84

7.17 Overall Accuracy for Experiment: No Econ – LDA – Knn 86

7.18 Confusion Matrix for Experiment: No Econ – LDA – Knn on Small Map . . . 87

7.19 Confusion Matrix for Experiment: No Econ – LDA – Knn on Medium Map . . 87

7.20 Confusion Matrix for Experiment: No Econ – LDA – Knn on Large Map . . . 88

7.21 Effective Accuracy for 1 min Fidelity . 90

B.1 Number of Wins, Ties, and Losses for each Match-up on the Small Map 106

B.2 Number of Wins, Ties, and Losses for each Match-up on the Medium Map . . . 106

B.3 Number of Wins, Ties, and Losses for each Match-up on the Large Map 107

B.4 Overall Accuracy for Experiment: Econ – None – Knn 107

B.5 Overall Accuracy for Experiment: Econ – None – SVM 107

B.6 Overall Accuracy for Experiment: Econ – PCA – Knn 108

B.7 Overall Accuracy for Experiment: Econ – PCA – SVM 108

B.8 Overall Accuracy for Experiment: Econ – LDA – Knn 108

B.9 Overall Accuracy for Experiment: Econ – LDA – SVM 108

B.10 Overall Accuracy for Experiment: No Econ – None – Knn 108

B.11 Overall Accuracy for Experiment: No Econ – None – SVM 109

B.12 Overall Accuracy for Experiment: No Econ – PCA – Knn 109

B.13 Overall Accuracy for Experiment: No Econ – PCA – SVM 109

B.14 Overall Accuracy for Experiment: No Econ – LDA – Knn 109

B.15 Overall Accuracy for Experiment: No Econ – LDA – SVM 109

B.16 Confusion Matrix for Experiment: Econ – None – Knn on Small Map 111

B.17 Confusion Matrix for Experiment: Econ – None – Knn on Medium Map 111

B.18 Confusion Matrix for Experiment: Econ – None – Knn on Large Map 111

B.19 Confusion Matrix for Experiment: Econ – None – SVM on Small Map 112

B.20 Confusion Matrix for Experiment: Econ – None – SVM on Medium Map . . . 112

xiv

B.21 Confusion Matrix for Experiment: Econ – None – SVM on Large Map 112

B.22 Confusion Matrix for Experiment: Econ – PCA – Knn on Small Map 113

B.23 Confusion Matrix for Experiment: Econ – PCA – Knn on Medium Map 113

B.24 Confusion Matrix for Experiment: Econ – PCA – Knn on Large Map 113

B.25 Confusion Matrix for Experiment: Econ – PCA – SVM on Small Map 114

B.26 Confusion Matrix for Experiment: Econ – PCA – SVM on Medium Map 114

B.27 Confusion Matrix for Experiment: Econ – PCA – SVM on Large Map 114

B.28 Confusion Matrix for Experiment: Econ – LDA – Knn on Small Map 115

B.29 Confusion Matrix for Experiment: Econ – LDA – Knn on Medium Map 115

B.30 Confusion Matrix for Experiment: Econ – LDA – Knn on Large Map 115

B.31 Confusion Matrix for Experiment: Econ – LDA – SVM on Small Map 116

B.32 Confusion Matrix for Experiment: Econ – LDA – SVM on Medium Map . . . 116

B.33 Confusion Matrix for Experiment: Econ – LDA – SVM on Large Map 116

B.34 Confusion Matrix for Experiment: No Econ – None – Knn on Small Map . . . 117

B.35 Confusion Matrix for Experiment: No Econ – None – Knn on Medium Map . . 117

B.36 Confusion Matrix for Experiment: No Econ – None – Knn on Large Map . . . 118

B.37 Confusion Matrix for Experiment: No Econ – None – SVM on Small Map . . . 118

B.38 Confusion Matrix for Experiment: No Econ – None – SVM on Medium Map . 118

B.39 Confusion Matrix for Experiment: No Econ – None – SVM on Large Map . . . 119

B.40 Confusion Matrix for Experiment: No Econ – PCA – Knn on Small Map 119

B.41 Confusion Matrix for Experiment: No Econ – PCA – Knn on Medium Map . . 119

B.42 Confusion Matrix for Experiment: No Econ – PCA – Knn on Large Map 120

B.43 Confusion Matrix for Experiment: No Econ – PCA – SVM on Small Map . . . 120

B.44 Confusion Matrix for Experiment: No Econ – PCA – SVM on Medium Map . . 120

B.45 Confusion Matrix for Experiment: No Econ – PCA – SVM on Large Map . . . 121

B.46 Confusion Matrix for Experiment: No Econ – LDA – Knn on Small Map . . . 121

xv

B.47 Confusion Matrix for Experiment: No Econ – LDA – Knn on Medium Map . . 121

B.48 Confusion Matrix for Experiment: No Econ – LDA – Knn on Large Map . . . 122

B.49 Confusion Matrix for Experiment: No Econ – LDA – SVM on Small Map . . . 122

B.50 Confusion Matrix for Experiment: No Econ – LDA – SVM on Medium Map . 122

B.51 Confusion Matrix for Experiment: No Econ – LDA – SVM on Large Map . . . 123

xvi

List of Abbreviations

Abbreviation Page

AI Artificial Intelligence . 1

CGF Computer Generated Forces . 1

RTS Real-time Strategy . 1

U.S. United States of America . 1

IEEE Institute of Electrical and Electronics Engineers 1

CIG Computational Intelligence and Games 1

AAAI Association for the Advancement of AI 2

AIIDE AI and Interactive Digital Entertainment 2

DoD Department of Defense . 2

BA Balanced Annihilation . 5

K-NN K-nearest Neighbor . 5

SVM Support Vector Machine . 5

PCA Principal Component Analysis . 5

LDA Linear Discriminant Analysis . 5

C4I Command, Control, Communications, Computers, and Intelligence . . . 7

IR Infantry Rush . 36

TR Tank Rush . 36

Artil Defended Artillery . 36

Antiair Anti-air . 36

Exp Expansion . 36

LOS Line-of-Sight . 38

AFIT Air Force Institute of Technology . 52

PA Producer Accuracy . 83

CA Consumer Accuracy . 83

xvii

A REAL-TIME STRATEGY AGENT FRAMEWORK AND STRATEGY

CLASSIFIER FOR COMPUTER GENERATED FORCES

1 Introduction

Research in artificial intelligence (AI) for computer generated forces (CGF) in

real-time strategy (RTS) games is of interest to both the U.S. military and academia. The

following two sections motivate our research from the perspective of both establishments.

1.1 Military Wargames and RTS Games

Wargames, also termed military simulations [56], have been used to train and educate

future strategic military leaders and decision makers for hundreds of years. As far back as

the 600s, the Persian ruling class would play a chess-like, abstract, strategic wargame

named Chatrang with their young princes to teach them to think about their opponent’s

choices and likely decisions—to teach them the critical thinking ability needed to make

strategic decisions when commanding an army in war. Wargames have continued to

evolve over the centuries from chess, a first generation war game, to second generation

wargames, like risk, and into 3rd generation wargames, such as RTS games. Today, the

U.S. military, like many other modern nations, use 3rd generation wargaming to educate

and train their officers as well as attempt to predict the outcome of possible future battles.

[11, 53]

1.2 Academic Interest in RTS Game AI

Recently, academic interest in RTS game AI has surged. Both the IEEE Conference

on Computational Intelligence and Games (CIG) and the Association for the

1

Figure 1.1: Agent Sending Gunships to Attack Opponent

Advancement of AI (AAAI)’s Conference on AI and Interactive Digital Entertainment

(AIIDE) have published several RTS AI related papers. [2, 19] Additionally, both

conferences host yearly RTS AI competitions which have enjoyed an increasing number

of submissions and attention over the last 3 years. [10, 24]

This interest in RTS AI started around the time M. Buro published a call for papers in

RTS AI in 2004 and research effort in the field has remained strong ever since [8].

1.3 Research Goal

Our goal is to lay the foundations for a RTS agent development methodology that

produces agents capable of making strategic decisions in real-time. We focus on a

methodology appropriate for computer generated forces in Department of Defense (DoD)

computer simulated wargames tailored towards military training and education. Our

long-term vision is an agent able to perceive opponent strategies in real-time and

intelligently respond to changes in opponent strategy.

2

To achieve this goal, we design and implement a RTS AI agent framework and a

system to produce strategy classifiers. The framework and classifier produced must be

appropriate for implementing an agent that can identify its opponent’s strategy in real-time

and adapt intelligently. By doing so, we provide the foundations of a practical RTS agent

methodology which can be applied to CGF in DoD wargames.

1.4 Research Objectives

In order to meet our goal, we have defined 6 research objectives. Our specific

research objectives are as follows.

Figure 1.2: Research Objective Dependencies

Strategy
Definition
Schema

Strategy
Definitions

Agent
Framework

Data Set

Strategy
Classifier

Counter-
Strategy

Table

1. Formulate a strategy definition schema effective in defining a range of RTS

strategies.

2. Define eight balanced strategies using our strategy definition schema.

3. Design a real-time agent framework that, when given a strategy definition expressed

via our strategy definition schema, plays the game according to the defined strategy.

4. Generate a high-quality, strategy-focused, RTS game data set from game

observations.

3

5. Create a classifier able to accurately, and quickly classify real-time game

observations as strategies. The classifier must have an accuracy ≥ 0.85 and execute

in < 3ms.

6. Find the best counter-strategies for each strategy definition on each map.

Figure 1.2 displays the dependencies between our 6 research objectives.

Figure 1.3: Heavily Defended Base Constructed by Agent Playing The Turtle Strategy

1.5 General Approach

We formulate a strategy definition schema consisting of a series of integer values that

define how to play the game using a specific strategy. These integer values represent

concepts, such as resource allocation into different categories (build-power, economy,

defense, units), army composition, and how to construct an initial economy. Using our

strategy definition schema, we define a list of basic RTS strategies, such as turtling,

rushing, expansion, air power, etc. We create an AI agent framework that implements the

4

low-level tactics and takes as input a strategy definition, which it follows while playing the

game. The agent framework is able to apply any strategy expressible in our strategy

definition schema. We build the agent framework on top of the Spring engine [42] and

design it to play the Balanced Annihilation (BA) game. Screenshots of the agent in action

are presented in Figures 1.1, 1.3, and 1.4. We run the agent while playing different

strategies over several iterations and collect game state observations (unit types, unit

positions, economy statistics). Using the collected observations, we create various

classifiers. They are trained using AI techniques to produce classifiers capable of

classifying a given opponent game state observation into one of the pre-defined basic

strategies. We create classifiers that learn the strategy centers via K-means clustering with

K-nearest Neighbor (K-NN) as well as classifiers that learn the strategy boundaries via

Support Vector Machine (SVM). We also perform two feature reduction techniques,

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), on the

training set prior to training the classifier. Thus, we can compare the effect of applying

PCA or LDA against using the raw data set without any feature reduction. Lastly, we find

appropriate counter-strategies for each basic strategy by inspecting our data set of game

observations.

1.6 Thesis Overview

The remaining of the document is split across 7 more chapters. Chapters 2 and 3

cover background topics. Chapter 2 gives a general background of RTS and AI concepts

relating to the research. Chapter 3 provides an overview of previous RTS AI research

approaches. Next, Chapters 4 and 5 present our methodology. Chapter 4 details our

strategy definition schema, strategy definitions, and our agent framework. This chapter

includes discussions on our agent architecture and design decisions. Chapter 5 lays out

our data collection process, how we produce our classifiers, and the method we use to

5

Figure 1.4: Agent Constructing Base Defenses

discover counter strategies. Our design of experiments is presented in Chapter 6 followed

by the results and discussion in Chapter 7. Concluding remarks and future work can be

found in Chapter 8.

6

2 Background in RTS Games

2.1 Introduction

This chapter discusses background information pertinent to our research effort. We

give a brief history on wargames, present an overview of RTS game concepts, define

general RTS strategies, and discuss AI techniques used to meet our objectives. The

background discussion is continued in the next chapter which explores previous

approaches to AI research in RTS games.

2.2 Wargames

First generation wargames are abstract representations of war and were used to train

and educate future leaders in strategic thinking. With second and third generation

wargames, the fidelity of the games increased to allow more realistic simulations of war.

Because of the increased fidelity, the use of wargames expanded from mere training and

education into actual preparation and planning for real battles by using the wargames to

predict the outcome of specific skirmishes. However, war has evolved to include strategic

bombing and effects-based warfare with greater emphasis on command, control,

communications, computers, and intelligence (C4I). As a tool for predicting the outcome

of today’s military engagements, wargames have not kept pace with the ever increasing

complexity of modern war. [11]

For the past 70 years, our military wargames have consistently failed to predict the

outcome of modern warfare battles. However, modern wargamming has grown in

popularity in the civilian sector. Previously, second generation wargames were

hand-crafted by individuals with the correct mechanical, artistic, and technical knowledge

and an interest in wargrames. Thus the supply of wargames was limited. Improved

manufacturing after the industrial revolution drastically increased the supply and reduced

7

the cost; making second generation wargames available to the middle class. The advent of

the affordable personal computer has further increased the accessibility and ease of use of

wargames while simultaneously decreasing the cost of ownership and operation; thus,

spawning a multi-billion dollar RTS computer game industry with millions of players

world-wide [11]. Today, third generation wargames are readily available on multiple

computing platforms—most at reasonable prices and some completely free.

2.3 RTS

The first RTS game was a Herzog Zwei published in 1989 for the Sega Mega

Drive/Genesis gaming system. However, the genre did not attain critical acclaim until

Dune II was released on DOS in 1992. Several other seminal titles appeared in the 1990’s

which firmly established the genre, such as the Warcraft series, the Command and

Conquer series, Total Annihilation, Age of Empires, and Starcraft. Today, RTS games are

a staple in PC video gaming. A more comprehensive RTS game history is available in

[54].

RTS games provide a compelling platform for military wargames for the purpose of

training and education. Current RTS games, although quite detailed and complex for an

entertainment-focused game, are still just abstract models of real, modern warfare and as

such, are not suitable to be used as “battle outcome prediction tools.” However, they do

enable and encourage the players to think through and implement complex strategies in

addition to dynamically adapting or changing their strategy to the fluidity of the battlefield.

In this way, RTS computer wargames have considerable potential in teaching players to

think strategically on the battlefield and think critically about his or her opponent’s

thoughts and potential actions. These are crucial skills for successful military officers.

Due to the growth of the civilian RTS wargamming market, civilian RTS wargames

have two obvious advantages over military developed wargames. The first is the cost. In

the past, the U.S. military has spent many millions and in some cases, billions of dollars

8

on creating their own wargames [11]. Today, a civilian commercial RTS wargame can be

purchased for < $70.

The second benefit to using civilian RTS wargames is accessibility. RTS wargames

are available on many computing platforms, such as Windows, Linux, FreeBSD, and

MacOS based PCs as well as home consoles such as the XBox 360 and Playstation 3.

Furthermore, they do not require a group of players to meet together along with a

moderator to arbitrate the game. RTS games can be played in single player mode using

built-in RTS AI agents. The agent takes the place of a human opponent. It performs the

same basic tasks of a human player. These tasks often include building a base,

constructing units, and attacking the player. The purpose of commercial RTS AI is to

provide the human player a challenging, entertaining opponent for off-line play or simple

practice. Unfortunately, many commercial RTS strategy games have very poor AI.

Developers choose not to implement modern AI techniques for various reasons. Some of

the reasons being:

• Perception that modern AI algorithms are too slow to implement in a real-time

program.

• Developers do not know about the existence of AI techniques.

• Developers do not understand how to implement AI techniques.

• Harbored distrust of modern AI techniques over traditional simple video game AI

such as state machines and scripted actions.

Furthermore, AI in RTS games is usually a low priority for the developers. Most of the

simulation logic must be implemented before the AI agents can be fully tested.

Additionally, commercial gamer attention is focused on the multi-player game-play and

graphics, therefore, so is the money [20]. Because AI is a low priority, commercial RTS

9

AI developers most often employ a scripted AI or include cheating, such as perfect

information or resource bonuses, in their agents.

There is a clear need for further research in applying modern AI techniques to the

domain of RTS games [8].

2.4 The Levels of RTS AI

Three levels of RTS AI are discussed in order to provide an understanding of possible

design structures that can implement the desired AI features. They include Unit-level AI,

Tactical-level AI, and Strategic-level AI.

2.4.1 Unit-level AI. This is the lowest level. It deals with controlling individual

units directly. It is used whenever a decision can be made without consideration for other

friendly units. Actions such as moving a unit, firing on a target, positioning a unit in its

optimal firing range, or using a unit to perform scouting are examples of unit-level AI.

This is also referred to as the “micro” level of RTS gameplay.

2.4.2 Tactical-level AI. This level is concerned with making decisions at the group

or squad level. Actions such as choosing what direction for a group to attack the enemy

base from, selecting a target for a group to attack, and arranging a squad formation are

examples of tactical-level AI. This level is usually focused on combat.

2.4.3 Strategic-level AI. At the strategic level, the AI is concerned with the overall

approach to winning. This is where the big decisions are made. Strategic-level AI mainly

deals with three categories: economy, construction, and timing. Examples of strategic

decisions include how much resources to spend on building economy vs offensive units,

what unit types to build, and where to erect defensive structures. This level AI also

includes timing decisions such as when to increase one’s technology level, when to push

for a large attack on the enemy’s base, and when to expand one’s base to control more

10

resources. This level AI is often referred to as the “macro” level of gameplay. Regarding

strategic-level AI features, three important decisions are defined.

1. Teching: This refers to the time chosen to advance to the next technology level and

what technology branch to pursue. In order to advance to the next technology level,

the player must first develop its economy to a point which it sustains the

requirements of the next technology level. The production of new factories or

construction units typically causes a drop in military offensive and defensive unit

production as resources are redirected from offense/defense to the new factories

and/or construction units. During this time, the player is more vulnerable to attack,

and thus, choosing to tech right before the opponent attacks can be disastrous. So

we see teching is a double-edged sword. Teching too early strains the economy,

causing production to drop. Teching too late gives the opponent the advantage—the

opponent will advance to the next technology level and produce stronger units that

will crush the lower technology units of the player. However, teching at the right

time gives the player the technology advantage which is often a major factor in

determining who will be the victor. Equally important to choosing when to tech, is

what technology branch to pursue. For example, the player can choose to advance

its technology level in land units, sea units, or air units. Choosing the right branch

for the given map and opponent’s play style is often the difference between winning

and loosing.

2. Pushing: Pushing describes the time chosen to launch attacks. Launching an attack

with an army of insufficient size or incorrect unit types just waste the army as it is

destroyed by the opponent’s defenses. Delaying in launching an attack with an army

of correct size and composition is also wasteful, as this gives the opponent time to

erect stronger defenses, fortifications and construct a better army.

11

3. Expanding: This describes the time and place chosen to create the next base

expansion. Expanding to soon can put the player at a disadvantage as it is forced to

assign construction units to the new expansion and defend the expansion, thus

putting strain on the economy. If the player is not ready to defend the new

expansion, its opponent may destroy the expansion at will, causing the player to

loose its valuable construction units and new buildings. If the player expands too

late, it is also at a disadvantage because its opponent will have already expanded

and be reaping the benefits of the stronger economy, and thus, create a more

powerful army and obliterate the player who delayed in expanding.

2.5 Definition of RTS Terms

The following list defines RTS terms we use throughout the remainder of the

document. Such definitions reflect those used by the RTS AI development community,

and particularly, the Spring Engine development community.

1. Real-time: Gomaa distinguishes between hard real-time applications and soft

real-time applications in that “a hard real-time system has time-critical deadlines

that must be met to prevent a catastrophic system failure. In a soft real-time system,

missing deadlines occasionally is considered undesirable but not catastrophic.”

[16] According to this definition, RTS games, and as an extension, RTS game agents

are soft real-time applications. The RTS agent’s “deadline” is to complete all

processing for the current frame within a game cycle period. This is misleading,

however, because the agent does not own all of the compute resources to itself. The

resources are shared with the rest of the game’s simulation. Therefore, the entire

game simulation, including the agent, must complete processing each frame within

a game cycle period. Missing this deadline does not cause a catastrophic system

failure, but merely gives the user a potentially unpleasant experience as the game

12

simulation rate slows down to accommodate the extra computation. Because the

Spring engine runs on Linux with a non-real-time kernel, it is difficult to guarantee

absolute execution bounds. For this reason, we use first and second order statistics

to show that our average execution times complete well within the deadlines. This is

sufficient to meet the soft real-time requirement.

2. Map: A map is an instance of the virtual battlefield used to conduct a game. It is the

data structure that defines the environment, such as terrain elevation, terrain type,

terrain features, color, etc. The characteristics of the map influences the players’

decisions and impacts the effectiveness of certain strategies. For example, a map

80% covered by water may influence the players to use sea or air power instead of

relying on ground units for offense and defense. We use three different maps in our

agent framework testing.

3. Economy: This refers to the production of resources required to create units and

buildings. In BA, the resources are metal and energy which are produced using

metal extractors and solar panels respectively.

4. Worker time: Each construction unit and factory has a worker time attribute. Its

value determines how fast a factory or construction unit can build new units and

buildings.

5. Build power: This is the players total capacity to construct units and buildings. It is

computed as the sum of the factories’ and construction units’ worker times.

6. Build time: Every unit and building has a build time attribute. It relates to the unit’s

cost and represents the specific amount of accumulated build power needed to fully

construct the unit.

13

2.6 RTS AI Agent Problem Solving

RTS games have several interesting problems for an agent to solve, many of which

have large, rugged search spaces. [8]

Economy and Resource Management. An agent must make decision about what units

and buildings to construct. It must also plan a base layout and carefully select its building

locations to give it a strategic advantage. The construction of resource-collecting

structures, such as solar panels or metal extractors must be planned ahead of time so that

the appropriate resources are available when needed.

Combat. The player must assign units to attack groups. If there are n units and m attack

groups, then the player has O(mn) choices. Also, when an attack group engages an

enemy’s attack group, the player must assign units to attack opponent units. This is also

many-to-many matching problem with exponential choices.

Path finding. Whenever a unit is moved, a path must be computed. This computation

must take into account static obstacles (buildings, mountains, crevices, rivers, etc.) and

dynamic obstacles (other units). Optimally solving a single instance of this problem

without any time constraint is not difficult. However, an RTS game can have several

hundred units in play. Solving hundreds of dynamic path-finding problems in real-time

becomes a difficult problem. Furthermore, just avoiding obstacles in not enough. An agent

should also generate path trajectories that avoid unwanted enemy confrontations while

placing the agent’s attack group in an optimal attack position to strike its target.

Non-deterministic and real-time. To be competent at playing RTS games, an agent

must be able to cope with the constantly changing environment of the game. Just because

it choses to take a specific action does not mean the action will be successful. For

example, an agent sends a construction unit to build a metal extractor, however, the

construction unit is destroyed before it reaches the build site.

14

Imperfect/partial Information. We have given examples of problems the agent deals

with in RTS games. However, these problems are all handled under partial information.

The agent can only see what its units see. The agent does not know what lies ahead unless

it has a unit scouting the area.

2.7 General RTS Strategies

There are a number of “common” RTS AI agent strategies including Rush, Blitz,

Turtle, Expansion, and Super-Weapon. These five presented strategy descriptions are

based on discussion found in [44].

2.7.1 Rush. In a rush strategy, the player focuses resources on building a small,

initial, offensive, military force with which to attack its opponent as early as possible.

Thus, the player makes a deliberate decision to dedicate most of its construction units and

raw materials to building an army as opposed to expanding its economy. The player only

develops its economy enough to establish an initial military production facility and

produce a small number of units. The intent is the initial assault arrives before the

opponent can create any meaningful defense and thus cause a great deal of damage to the

opponent’s economy and military production. The player can then follow up with similar

small waves of attacks to finish off the opponent.

This strategy works best on small maps or in games where the players’ starting

locations are in close proximity to one another. This strategy is less effective on large

maps where the players’ starting positions are far apart and the initial attack force must

travel a considerable distance before reaching the opponent’s base. This time delay gives

the opponent the necessary time to build up sufficient defenses to ward off the attack,

preventing the player from significantly damaging its opponent’s economy or military

production.

15

The opponent’s decisions in the opening of the game are crucial to the success or

failure of a rush strategy. If the opponent does not expect a rush attack, he may chose to

focus his resources in developing his economy in an attempt to build a stronger economy

than the rushing player. If so, the initial attack on the opponent’s base will be devastating.

On the other hand, if the opponent prepares for a rush attack by building some cheap

initial defenses, such as gun emplacements or assault units, the rush attack will inflict

minimal damage and fail to gain any economic advantage over the opponent. This may

cause the opponent to be economically ahead of the rushing player and eventually cause

the rushing player to lose the game.

Rush strategies can be implemented using different units. For example, an infantry

rush uses weak, low-level, raider units while a tank rush uses basic tank units. The same

principles apply to any implementation with some adjustments. For example, a tank rush

requires a stronger economy than an infantry rush.

2.7.2 Blitz. A blitz strategy is primarily an offensive strategy, although not as

extreme as a rush strategy. A blitzing player constructs an army of moderate size—strong

enough to drive straight into the enemy base, overcome any defenses, and destroy the base

in one attack. A blitz is appropriate when the player expects its opponent to prepare for a

rush. By creating a larger army than with rushing, the player is able to prevail against the

small defenses the opponent established, and win the game. Compared to rushing, a blitz

attack requires a stronger economy as it constructs a larger army.

2.7.3 Turtle. A turtle strategy, also called porcing, relies on defense to bring the

victory. The player constructs defensive structures such as laser turrets and walls while

building-up its economy. Since defensive structures are usually more cost-effective than

offensive units, the player may be able to pull ahead of its opponent economically. Later

in the game, once the player’s economy is strong, it shifts its focus to producing a

16

powerful army which the player uses to crush its opponent in one attack or the player

builds a super-weapon and takes its opponent out from a distance (see super-weapon

strategy below.)

Turtle strategies can be difficult to maintain as the game progresses. As the base

increases in size and the player expands into larger areas, its larger territory becomes more

difficult and expensive to defend. While the player is forced to defend all of its territory

well, its opponent only needs to punch a small hole in the player’s defenses to sneak an

attack into the base.

Turtling is often used by novice players as it allows them to focus only on their own

territory and ignore their opponent. Strategies like rush and blitz require the player to

multi-task: controlling both the construction units in its base and the attacking units

assaulting the enemy’s base.

2.7.4 Expansion. Expansion, also known as map control, is a strategy where the

player focuses on controlling as much resources as possible. The player is always trying

to expand its base over uncontested resources to gain an economic advantage. This

economic advantage allows the player to outproduce its opponent in military strength,

eventually leading to victory. An expansion player must keep its opponent occupied by

harassing the enemy base with light raiding parties. This harassment tactic, if successful,

will keep the enemy from noticing undefended expansions long enough for the player to

send defensive units or erect defenses. Expansion strategies can be difficult to execute as

the player must manage multiple satellite bases—coordinating both new constructions and

defenses at all sites, in addition to orchestrating occasional raids against the enemy.

2.7.5 Super-weapon. With a super-weapon strategy, the player focuses on defense

while building up its economy. Later in the game, when its economy is strong, the player

17

constructs a nuclear missile silo or a very long range cannon to destroy the enemy from

the safety of its own base.

2.8 AI

AI is concerned with the study and design of rational agents [34]. Most of AI can be

categorized into two main disciplines; search and knowledge representation.

Famous successes in AI research include the chess competition between IBM’s Deep

Blue computer and Garry Kasparov, the then reigning world champion of chess. Deep

blue failed to win the first competition in 1996. However, in 1997, Deep Blue defeated

Kasparov during their rematch, winning 3.5 of 6 games. IBM researchers used a brute

force mini-max algorithm with alpha-beta pruning to search approximately six to eight

moves ahead in an attempt to find the best action to take. The mini-max evaluation

function had many parameters which were optimized by analyzing thousands of master

chess games. IBM employees, with the help of chess grand masters, also created a

hand-coded opening book with 4,000 positions and 700,000 grand master games in

addition to an endgame database of moves fine-tuned to Kasparov’s chess techniques. [52]

Another, more recent, famous, example of AI success, also from IBM, is Watson, the

Jeopardy! playing computer. Watson defeated two Jeopardy! champions. The computer

was pre-loaded with several databases of trivia information, such as the entire wikipedia

encyclopedia text, totalling four terabytes in size. It used multiple database search

algorithms and natural language processing algorithms to successfully answer more

game-show questions correctly than its opponents. [55]

2.8.1 Weak AI in RTS Agents. Strong AI is the field of AI that attempts to match

or exceed the intelligence of humans. Weak AI is the opposite; it does not attempt to

match or exceed the intelligence of humans. This is appropriate for video game AI, as the

AI is only intended to entertain the human opponent by providing the illusion of true

18

intelligence. RTS AI agents in commercial and open source video games often apply

simple, computationally-efficient AI approaches such as scripted behavior triggered by

if-then-else rules, state machines, and greedy search algorithms. We apply a factored state

machine agent with greedy search to implement our agent framework. [34]

2.8.2 Statistical Machine Learning. Statistical machine learning is largely

involved in solving three problems; clustering, classification, and regression. Techniques

in machine learning can be categorized as supervised and unsupervised. A supervised

technique involves using labeled samples to train a model. Supervised techniques include

K-NN, LDA and SVM. An unsupervised technique, on the other hand, does not use labels

to train the model. Examples of unsupervised techniques are k-means clustering and PCA.

All the above techniques are employed in creating and testing our strategy classifiers. We

apply k-means, a clustering algorithm, together with K-NN to construct classifiers. We

also use SVM [13] to construct classifiers. PCA and LDA are applied for feature

reduction, also known as dimensionality reduction. K-fold cross-validation is a popular

method to perform testing on classifiers as it achieves an acceptable balance between bias

and variance. We use 5-fold cross-validation in our testing. First and second order

statistics are used to measure accuracy and precision respectively. For more in-depth

discussion on statistical machine learning, see [14, 17].

2.9 Chapter Summary

In this chapter, we provided background information on our research effort. This

included a brief history on wargames, an overview of RTS game concepts, the definitions

of general RTS strategies, and an overview of AI techniques used to meet our objectives.

The AI section is not intended to discuss the complete field of AI [34, 14, 17], but only to

introduce AI aspects of use in an RTS agent.

19

Using the Chapter 2 foundation discussion, the next chapter presents previous

approaches of research in RTS AI.

20

3 Previous AI Approaches in RTS

3.1 Introduction

Interactive computer games have been an attractive platform for AI research for over

12 years due to their low cost and accessibility [21, 20]. Over the years, RTS games have

become especially popular as research platforms because of their complexity and many

subproblems with large, rugged search spaces [8].

In the following sections we discuss a number of prevalent techniques used in recent

RTS AI research. Each section is devoted to a single technique. The methods discussed

are reinforcement learning, dynamic scripting, Monte-Carlo planning, case-based

planning, Bayesian networks, evolutionary algorithms, modular agent design, and

opponent modeling. This layout is inspired by [49].

3.2 Reinforcement Learning

Reinforcement learning is a machine learning technique where actions of a given

state are rewarded or punished according to the fitness of the result they produce. The

agent picks actions with the greatest benefit in an attempt to maximize some reward [38].

The contribution of [3] is an evaluation function suitable to predict the outcome of

Spring BA games during different phases of the game. The function was defined with a

number of parameters which were tuned using temporal difference learning over hundreds

of games.

The authors of [45] present a method to create dynamic formations in the ORTS RTS

game [9]. They use a set of parameters to define a formation. The “good” formations are

learned via off-line reinforcement learning [38] with stochastic optimisation. Each

opponent is played iteratively until a maximum number of iterations is reached (200 to

500). The learning weights of the parameters are updated after every game. Thus one

21

formation is generated for each opponent. The authors employ off-line opponent modeling

to learn features of specific opponents. During gameplay, the opponent is classified using

Bayes’ theorem according to its observed features and a formation is selected based on the

predicted opponent model.

The learning is entirely off-line. This approach requires the AI designer to be able to

train the agent on all the opponents a priori.

3.3 Dynamic Scripting

Dynamic scripting is a form of online reinforcement learning [38] for agents with

stochastic optimisation. It was pioneered by the authors of [37]. To apply dynamic

scripting, one must have a deep understanding of the problem domain and use that

knowledge to manually create a large number of tactics, also termed rules, as well as

design an accurate evaluation function. The tactics are placed into a database and each

assigned an equal weight. During gameplay, a tactic is probabilistically selected based on

weight. The agent implements the tactic and the evaluation function determines the

tactic’s performance. If it does well, it’s weight is increased, and all other tactic’s weights

are decreased. If it does poorly, it’s weight is decreased, while all others are increased.

This method was tested against static scripts, random scripts, and pseudo-random scripts

(the opponent uses the same tactic as long as it is successful. If the tactic fails, the

opponent randomly selects a new tactic.)

3.4 Monte-Carlo planning

With Monte-Carlo planning, one randomly simulates many plans, and picks the plan

with the best performance. Plans are often constructed using a tree structure. Defining a

proper evaluation function is very important, as an inaccurate evaluation function could

lead to choosing bad plans. Thus, one needs enough domain knowledge to write a good

22

evaluation function. Also, Monte-Carlo planning requires one to have the domain

knowledge to define the high level actions that make up a plan.

The approach requires a simulator to simulate plans. With RTS games, the game

itself can serve as the simulator. This results in a very accurate, yet computationally

expensive simulator. A drawback to Monte-Carlo planning is it does not learn from past

mistakes. Monte-Carlo planning is applied on the ORTS game using the capture the flag

gameplay mode in [12]. In [6], a Monte-Carlo planning algorithm is applied at the tactical

assault level in the RTS game Wargus. The algorithm is concerned with choosing a

group’s defense, offense, group movement and positioning in tactical engagements.

3.5 Case-based Planning and Reasoning

With case-based plaining, one considers the current “case”, or game state, and

searches through a case-base (database of cases) to find similar cases. Of the similar cases,

the action leading to the highest fitness value is selected.

To create the case-base, randomly pick a plan and execute it. If the evaluation

function reports a positive fitness, increase the score for that plan/state pair. If instead, the

fitness is negative, decrease score for that plan/state pair. Another way is to create the

case-base by learning plans through observing expert players. This requires expert

goal/action annotations.

In [27], the author attempts to achieve the goal of winning through a plan of

subgoals. The author had 35, 23 and 17 recorded games from player A, B and C

respectively. Each of the three sets of recorded games became a case-base. When the

agent used the case-base from A, it played like A. When using the case-base from B, it

played like B—likewise for C.

A case-based reasoning approach is used in [4] to create a case-based adaptive game

AI which can rapidly adapt to its opponent and environment without requiring numerous

trials to learn new behavior. The approach uses a case-base and game observations with

23

reinforcement learning to adapt AI behavior similar to the approach with dynamic

scripting. The evaluation function is taken from previous work by the same author [3].

In [48, 47], the author uses case-based reasoning to decide build order in an imperfect

information environment using the Starcraft RTS game.

The authors of [1] use case-based plan selection to adapt the work of [29] to be

suitable against dynamic opponents instead of only statically scripted opponents.

3.6 Bayesian Networks

The author of [40] uses a Bayesian model to predict the opponent’s tech tree. The

models are trained using a database of over 8000 Starcraft game replays. In [41], the

author leverages hierarchical Bayesian networks to perform local unit control. The author

again leverages Bayesian models to predict the opponent’s opening moves in [39].

3.7 Evolutionary Algorithm

The authors of [29, 28, 30] improve their adaptive AI by building on the concepts of

dynamic scripting. To create the database of tactics, they use an off-line evolutionary

algorithm to evolve tactics automatically instead of the previous way of hand-coding

tactics. They name their system ESTG for Evolutionary State-based Tactics Generator.

The game state is defined by the types of buildings the agent possesses. Whenever a

building of a new type is constructed, the game transitions into a new state. There are 20

distinct game states for their testing platform, Wargus. The off-line evolutionary algorithm

learns good tactics for each game state. The on-line reinforcement learning algorithm

associates weights with the tactics/state pairs. As with dynamic scripting, the weights

determine the probability of a tactic being selected in a given game state. This approach

only considers the agent’s own state and the previous performance of tactics in that state

to decide the next action; it ignores the opponent’s state entirely. The approach was tested

successfully against four hand-written, static scripts.

24

3.8 Modular, Integrated Agent

In [25], the authors use human analysis of expert human play to define threshold

values for simple, discrete decision-making. Their research platform is their ABL reactive

planner on top of the open-source RTS, Wargus. Their architectural approach breaks the

agent up into several components termed managers. The managers are strategy (initial and

tier), production, income, tactics, and recon. They do not use special formations or low

level tactics. The approach was tested against two static scripts: soldier rush and knight

rush.

3.9 Opponent Modeling

The author of [35] applies hierarchically-structured opponent modeling to perform

real-time strategy classification using the Spring engine with BA. The hierarchical

structure consists of two levels: a top level used to classify general play style (aggressive

or defensive) and a bottom level used to classify the specific strategy. For example, the

aggressive play style can use a tank or k-bot strategy while the defensive play style can

use the super weapon, tech, or bunker strategies.

The top level classifier uses a fuzzy model to distinguish between aggressive and

defensive. The percentage of time the opponent is attacking indicates how aggressive it is.

The classifier detects aggressiveness when a player unit is destroyed. The bottom level

classifier uses observations events (under imperfect information) to classify opponent

strategy. This occurs when attacking our scouting. The classifier emphasise recent events

via discounted reward.

In [5], the authors incorporate opponent modeling to enhance the performance of

their case-based adaptive game AI. They create the opponent models off-line. To create

their opponent models, they use their domain knowledge of the game to manually select

features used to define the models. This, of course, limits the accuracy of the models. The

25

opponent they use is the Spring AI agent named “AAI”. They play 975 games on three

distinct maps—325 per map. For each game they collect feature observations of the

opponent every few seconds via perfect information. K-means clustering is applied to the

observations to generate opponent models. The models produced are actually opponent

preferences of the “AAI” agent when playing on the three different maps.

To detect the opponent’s model, they use on-line classification via minimum

euclidean distance from current game observation to cluster centers. Again, perfect

information is used to collect the on-line game observation. It took about 10 minutes of

game play to establish models.

The author of [51, 50] uses the spring engine to create a classifier that can predict

game winning and loosing states in the third quarter of the game with an average accuracy

between 65.8% and 76.6% depending on the opponent the classifier was trained on. The

author creates four scripted opponents and four matching classifiers. Each of the four

classifiers are trained using games where the matching opponent is player two. A dynamic

agent is implemented that can win against each of the four static, scripted opponents when

using the appropriate classifier trained on the target opponent.

The research effort of [23] is similar to the work presented in this thesis, except it is

applied to the domain of football. Instead of classifying game state as strategies, they

classify football formations as football plays. More specifically, the authors present an

approach to online opponent modeling to improve offensive performance in the Rush 2008

football simulator. SVM is used as the classifier. Once the opponent’s football play is

predicted, the agent selects an appropriate counter-play that will improve the yardage gain

and executes it. The authors extend their work in [22] to include real-time plan repair

using Upper Confidence Bounds applied to Trees.

26

3.10 Chapter Summary

The above research provides several implementations for tactical and unit-level AI.

This includes individual unit control, dynamic formations, optimised tactic selection and

group-level tactical assault control. These contributions could be integrated into a single

agent capable of playing well at the unit-level and tactical-level.

At the strategic-level, contributions included build-order prediction, tech-tree

prediction, and an RTS evaluation function. Our work in the strategic-level could be

enhanced with the other strategic-level contributions, and eventually integrated together

with the tactical-level and unit-level AI to complete the hypothetical agent.

In this chapter, a number of prevalent techniques used in contemporary RTS AI

research are detailed. The methods discussed are reinforcement learning, dynamic

scripting, Monte-Carlo planning, case-based planning, Bayesian networks, evolutionary

algorithms, modular agent design, and opponent modeling. In the next chapter, an RTS AI

agent framework is developed based in-part on the foundations discussed in Chapters 2

and 3.

27

4 Agent Framework

4.1 Introduction

This chapter is the first of two chapters concerned with our methodology. Here the

focus is on the agent framework while the next chapter focuses on classifying strategies.

In the following sections we present the strategy definition schema, formulate eight

strategy definitions, and explain the design and implementation of our agent framework.

4.2 Strategic Constructs

We define a list of basic RTS strategies, such as turtling, rushing, expansion, strategic

bombing, etc. The strategy definition schema is presented; it consists of a set of integer

values (build-power, economy, defense, units, group composition and initial economy).

All strategies are defined using this simple schema. The AI agent framework implements

the low-level tactics and takes as input a strategy schema. The agent is thus able to follow

any strategy expressible in our strategy definition schema.

4.2.1 Strategy Definition schema. A strategy definition schema is needed to

represent and describe various strategies in a concise and flexible manner. The schema we

develop only uses 6 + n integer variables where n is the number of combat unit types

available. The strategy definition schema is shown in Table 4.1. The first four variables

determine how the current resources are distributed among the four construction

categories. Resources are defined as metal and energy [see definition of economy in

Section 2.5]. The sum of the four values must always equal 100. The Group Composition

variable determines the number of each unit type required to form a complete attack

group, ready to be sent into battle. Finally, the Initial Economy is a 2-tuple of integer

values. It defines the number of resource producing structures to construct prior to

building the factory. The resource producing structures establish an initial economy for

28

the agent prior to entering combat unit production. The first integer value is the number of

metal extractors and the second is the number of solar panels.

Table 4.1: Strategy Definition Schema

Variable Name Domain Description
Build Power Integer value from

0 to 100
Specifies the percentage of resources
used to increase build power.

Economy Integer value from
0 to 100

Specifies the percentage of resources
used to expand the economy.

Defense Integer value from
0 to 100

Specifies the percentage of resources
used to construct defensive structures.

Units Integer value from
0 to 100

Specifies the percentage of resources
used to construct combat units.

Group Com-
position

Provides a non-
negative integer
value for each unit
type

Gives exact size and composition of an
attack group.

Initial Econ-
omy

2-tuple of non-
negative integer
values

Number of metal extractors and solar
panels to construct prior to building the
factory

4.2.2 Strategies. We select eight general strategies to be used in our agent

framework. Previous approaches of RTS AI research have employed two to four scripted

opponents for testing [see Chapter 3]. The low number of scripted opponents is due to the

difficult and time consuming nature of programming each individual agent by hand. By

testing the system with eight strategies, the agent framework effectively behaves as eight

different scripted opponents. This is double the number of opponents in previous research.

By using this relatively large number of strategies, we validate the usefulness and

effectiveness of the strategy schema approach. The following subsections provide English

descriptions of each strategy.

29

4.2.3 Infantry Rush. This is a rush strategy that uses tech level 1 k-bot infantry

units as illustrated in Figure 4.1. The intent is to attack the opponent as soon as possible.

The attack group consists of three infantry units—one flea, one peewee, and one rocko. A

small initial economy is needed to support the production of the infantry units. Only one

metal extractor, two solar panels, and a k-bot lab are required for the initial economy.

Once they are constructed, all resources are devoted to building infantry units. The agent

continues to build waves of three infantry units until the game is over.

Figure 4.1: Agent Playing the Infantry Rush Strategy in BA

4.2.4 Tank Rush. This is a rush strategy that employs level 1 assault tanks. It is

depicted in Figure 4.2. The intent is to build an attack group of three assault tanks (stumpy

units) and attack as quickly as possible. The initial economy is composed of three metal

extractors, three solar panels, and a vehicle plant. Once the initial economy is established,

all resources are devoted to building tanks. The agent continues to build waves of three

tanks units until the game is over.

30

Figure 4.2: Agent Playing the Tank Rush Strategy in BA

4.2.5 Blitz. With the blitz strategy, shown in Figure 4.3, the goal is to build a

massive army large enough to power through any defenses and destroy the enemy base as

quickly as possible. Therefore, the agent creates an initial economy and a vehicle plant as

with the Tank Rush strategy, and then begins to build its army of four raider tanks (flash

units), one missile truck (samson unit), size assault tanks (stumpy units), and two rocket

tanks (janus units). Since this strategy requires a larger army than the rush strategies, it

allocates 2% of its resources to build power which helps it construct the army faster.

Another 10% of its resources are dedicated to expanding its economy—providing the

metal and energy needed to construct the tanks. Since this is a highly offensive strategy,

like rush, it does not allocate any resources to defense.

4.2.6 Defended Artillery. This strategy, seen in Figure 4.4, leverages the long

range of artillery. It focuses on building attack groups of two artillery trucks (shellshocker

units) along with a supporting squad of one scout jeep (jeffy unit), two raider tanks (flash

31

Figure 4.3: Agent Playing the Blitz Strategy in BA

untis) and two assault tanks (stumpy units). When the attack group is ready, the artillery is

moved within range of the enemy base but outside the range of any enemy defenses and

the artillery fires on the base. The support squad defends the artillery trucks from enemy

units. The agent continues to produce artillery attack groups while expanding its economy

until the game is over. Because the artillery attack group is considerably more expensive

than the rushing attack groups, more resources are spent on build power and economy to

ensure the agent’s economy can support the strategy. Since the artillery units provide little

defense against enemy units attacking the base, 10 % of the agent’s resources are devoted

to defense.

4.2.7 Bomber. Using air power, the agent constructs an air force of strategic

bombers to destroy the enemy from above. Figure 4.5 offers a screenshot of the strategy in

action. An attack group consists of four bomber aircraft (thunder units). The bombers are

sent to directly attack the enemy commander doing repeated bombing runs. Using their

32

Figure 4.4: Agent Playing the Defended Artillery Strategy in BA

speed, the bombers are able to quickly fly into enemy territory, drop their payload and fly

out, leaving the opponent only a small window of time which the bombers are in range of

the opponent’s weapons. In addition to their speed, bombers, like other aircraft, also

benefit that most ground units inflict much less damage when attacking air units. Unless

the opponent constructs anti-air towers and/or anti-air units like the jethro, the samson, or

the freedom fighter, the opponent will be nearly defenseless against the bombers. The

agent continues to produce attack groups until the game is over.

4.2.8 Anti-air. The anti-air strategy is especially tailored to counter play styles

that rely on air power. It constructs a strong initial economy. To defend against enemy

aircraft, 20% of its resources are devoted to defense. The agent constructs four freedom

fighters to shoot down any enemy aircraft and five bombers (thunder units) to bomb the

commander with.

33

Figure 4.5: Agent Playing the Bomber Strategy in BA

Figure 4.6: Agent Playing the Anti-air Strategy in BA

4.2.9 Expansion. This strategy can be seen in Figure 4.7. It focuses on expanding

as quickly as possible to control as much of the map and the available resources as it can.

34

Therefore, much of its resources are spent on build power and economy so it has the

workforce, metal, and energy needed to expand quickly. With only 55 % of its resource

dedicated to combat units, the agent slowly builds up an army of one scout (flea unit), four

light infantry (peewee units), two rocket infantry (rocko units), four anti-air infantry

(jethro units), two plasma canon infantry (hammer units) and eight heavy infantry units

(warrior units) to attack the enemy.

Figure 4.7: Agent Playing the Expansion Strategy in BA

4.2.10 Turtle. The turtle strategy, depicted in Figure 4.8, emphasises defense

above all. It invests in economy and build power while protecting its investment with

heavy defenses. It builds light laser towers and anti-air towers while leveraging its many

combat units as mobile defenses. Since it is building a large army of four raider tanks

(flash units), three missile trucks (samson unit), eight assault tanks (stumpy units) and

three rocket tanks (janus units), the constructed vehicles are available as defensive units

for a prolonged period of time while the fist attack group is built.

35

Figure 4.8: Agent Playing the Turtle Strategy in BA

Table 4.2 provides the abbreviations for each of the strategy definition names used

throughout the remainder of this document.

Table 4.2: Strategy Abbreviations

Full Name Abbreviation Full Name Abbreviation
Infantry Rush IR Tank Rush TR

Blitz Blitz Defended Artillery Artil
Bomber Bomber Anti-air Antiair

Expansion Exp Turtle Turtle

4.2.11 Strategy Definitions. Table 4.3 defines the strategies in terms of numeric

values according to the strategy definition schema presented in Table 4.1.

The numbers under group composition are the count of each unit type. The types, in

the order listed above, are: flea, peewee, rocko, jethro, hammer, warrior, jeffy, flash,

shellshocker, samson, pincer, stumpy, janus, freedom fighter, banshee, and thunder. Under

36

Table 4.3: Strategy Definitions

Construction Variables
Build Initial

Name Power Economy Defense Units Group Composition Economy
IR 0 0 0 100 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

TR 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 3
Blitz 2 10 0 88 0 0 0 0 0 0 0 4 1 0 0 6 2 0 0 0 3 5
Artil 5 15 10 70 0 0 0 0 0 0 1 2 0 2 0 2 0 0 0 0 3 4

Bomber 5 20 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 5
Antiair 5 20 20 55 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 3 5

Exp 10 20 15 55 1 4 2 4 2 8 0 0 0 0 0 0 0 0 0 0 2 3
Turtle 5 10 30 55 0 0 0 0 0 0 0 4 3 0 0 8 3 0 0 0 3 4

the initial economy column, the integers represent the number of metal extractors and

number of solar panels to be constructed prior to building the factory.

4.3 Making Strategic Decisions

The agent begins by building the number of metal extractors and solar panels defined

in its initial economy. The agent then consults its Group Composition variables to

determine what factory type it needs and constructs it. Once the factory is complete, the

agent exits initial economy mode and enters normal mode.

In normal mode, whenever a construction unit or factory is idle, the agent must

decide how to use it. This decision is guided by the four construction variables, Build

Power, Economy, Defense, and Units. The resources (metal and energy) are spent into the

four categories such that the ratio of the resources spent per category divided by the total

resources spent matches the construction variable values. When spending on the build

power category, more construction units are built. When spending on the economy

category, more solar panels and metal extractors are constructed. When spending on the

defense category, defensive structures, such as light laser towers and anti-aircraft towers

are built. When spending on the units category, combat units are created according to the

Group Composition variables.

37

4.4 Groups Tactics

Group tactics can be complex with many difficult sub-problems to solve. Much

research has already been accomplished in this area as presented in Chapter 3. Because

the focus of our research is strategic-level decision making, we keep the tactics as simple

as possible. Future work will integrate the contributions of recent tactical-level AI into our

agent framework.

There are two types of groups: attack and defense. All groups begin life as a defense

group and eventually become an attack group. An agent only has one defense group, but

can have many attack groups. Groups are built in cycles. When a unit is built, it joins the

agent’s single defense group. The defense group guards the commander and

counter-attacks any assault on the base if the attacker is within global line-of-sight (LOS).

This keeps the units usefully defending the commander and base while they wait for

remaining members of their group to be created. When the defense group is

complete—when it has all the units defined by the Group Composition variable—it

becomes an attack group. A new, empty defense group is created to replace the previous

one. The new defense group will receive the next wave of constructed units. Once in

attack mode, the group selects a target according to the programmed tactics.

To select a target, the distance from each enemy unit to the group’s center of mass is

calculated and the closest enemy ground unit is attacked. This tactic was inspired by [50].

Once the current target is destroyed, a new target is selected. This cycle is repeated until

all enemy units are destroyed or the attack group is destroyed. Groups containing bomber

aircraft have different tactics. Instead, the group always targets the commander regardless

of position. Additionally, only ground units defend the base. Aircraft, such as the bomber,

do not defend the base because if the do, they can accidentally bomb friendly units and

structures as well as the enemy.

38

4.5 Agent Architecture

Figure 4.9, inspired by Russell and Norvig’s discussion of agent structure in Chapter

2 of [34], gives a high-level representation of our agent and its environment. The agent

structure most closely resembles a model-based reflex agent with factored state as

discussed in [34], pages 50-58.

Figure 4.9: Agent and Environment

Environment
(Spring
Engine)

Agent

Percepts
(Events and
unsynchronized
commands)

Actions
(Synchronized
commands)

Strategy
Definition

Loaded during
Initial configuration

State

4.5.1 Percepts. The agent has two ways it perceives its environment. 1) The game

events sent from the Spring engine provide the agent with notification of important events.

2) The agent uses unsynchronized commands to query the Spring engine while processing

events. The information the agent can obtain form querying the Spring engine is as

follows:

1. Location and type of each friendly unit and building

2. Location and type of each enemy unit and building

39

3. The agent’s amount, storage capacity, production rate and usage rate for both metal

and energy.

4. Available construction sites

Table 4.4: Engine Event Table

Event Name Description
update This event is fired every frame of the game. The engine

executes (approximately) 30 frames per second.
unitCreated This event occurs when a unit comes into existence, even

though the unit may not be functional yet. For example,
when the commander begins building a metal extractor, a
unitCreated event is fired, even though the metal extractor is
still under construction. This event precedes the unitFinished
event.

unitFinished This event indicates construction on a unit is complete
and the unit is ready for orders. This event succeeds the
unitCreated event.

unitIdle This event is sent when a unit has no order to execute.
unitDamaged Whenever a friendly unit receives damage, this event is fired.
unitDestroyed This event occurs when a friendly unit is destroyed.
enterLOS Whenever an enemy unit enters the LOS of a friendly unit,

this event is fired.
leaveLOS This event indicates an enemy unit has left the LOS of a

friendly unit.
enemyDestroyed Anytime an enemy unit is destroyed, this event fires.
enemyFinished This event occurs when an enemy unit has been completely

constructed and is ready for its first order.

The game events, along with descriptions of each, are listed in Table 4.4. The update

event is periodic while all other events are aperiodic.

4.5.2 Agent Actions. The agent directs five basic entities, the commander,

construction units, the factory, the defense group, and the attack groups. When an event is

triggered, the agent assesses the situation and performs actions on the effected units if

necessary. For example, if the unitIdle event is triggered for the commander, the agent can

40

either order the commander to assist the factory or construct a new building. The actions

the agent can perform are:

1. Commander

(a) Assist the factory in constructing new units

(b) Erect a building (econ or defense)

2. Basic construction units always assist the commander in whatever he is building

3. The factory creates units according to the Group Composition variable.

4. The defense group is always ordered to guard the commander unless the base is

under attack

5. Attack groups must be given a target to attack

4.5.3 Spring Engine AI Interface. The Spring engine uses a plugin interface to

dynamically load agents into the game. If a game is directed to use an agent as one of the

players, the engine searches for a AIInfo.lua file in the subdirectories of the /AI/Skirmish/

directory that defines a matching agent name. Once it finds a match, it loads the shared

library with a name of libSkirmishAI.so from that directory. [43]

Figure 4.10: Spring Engine Agent Plugin Architecture

Spring Engine
Executable

Agent Plugin
Shared Object

Init

handleEvent

release

Engine handleCommand

Unsynchronized callback functions

41

The Spring engine skirmish AI (agent) plugin interface is defined by four files found

in the rts/ExternalAI/Interface/ directory in the Spring engine source code. The four files,

shown in Table 4.5, are named AISEvents.h, AISCommands.h, SSkirmishAICallback.h

and SSkirmishAILibrary.h. The interface uses the concept of events and commands.

Events are signals that the engine uses to call into the agent. They are implemented as data

structures that are sent to the agent by calling the agent’s handleEvent function.

Commands are signals that the agent uses to call back into the engine. Commands come in

two forms, synchronized and unsynchronized. Synchronized commands change the state

of the game; they include commands that move units, build structures and direct units to

attack. Commands are sent over the network to all players to be executed on all

simulations. Synchronized commands are implemented as data structures that the agent

sends to the engine by calling the engine’s handleCommand function. Unsynchronized

commands do not alter the game state. They include commands that ask for a unit’s

position on the map or the player’s currently available resources. Unsynchronized

commands do not need to be sent over the network. There are 614 different

unsynchronized commands, each with its own callback function.

Table 4.5: Spring Skirmish AI Interface Files

Interface File Functionality

AISEvents.h Defines event topics and data structures

AISCommands.h Defines command topics and data structures

SSkirmishAICallback.h handleCommand, unsynchronized callback functions

SSkirmishAILibrary.h init, release, hadleEvent, levelOfSupport

Given this interface, every agent must implement its own init, release, and

handleEvent functions and make these functions global symbols in the shared library. In

order to allow the agent to call back into the engine, the engine passes the memory address

42

of the callback structure as a parameter to the init function when the engine initializes the

agent. The callback structure contains a pointer to the handleCommand function and all

614 unsynchronized callback functions. Thus the agent receives the callback structure and

can use it to invoke any of the 615 callback function on the engine.

Figure 4.11: Shared Object Agent Framework

Spring
Engine

Plugin Entry
Point

libSkirmishAI.so
proxy.so

libpython2.7.soclb.so

The Spring engine has AI interfaces for C, C++, and Java. Both the C++ and Java

interfaces are implemented on top of the basic C interface. We chose to use the C interface

as it is the most simple and straight forward of the three. During initial framework design,

the Java interface was tested but found to have some software bugs. Most of our agent is

written in Python, with only a minimal amount of glue code in C to communicate with the

Spring engine. Figure 4.11 presents the relationship between the different shared objects

in our agent framework. A shared object is the Unix equivalent of a dynamically-linked

library on Windows. The arrows represent the direction of the function invocations. The

proxy.so library configures the environment and loads libpython2.7.so which contains the

Python interpreter. Once the Python interpreter is loaded into memory, the proxy.so loads

the agent.py module and returns a reference of the Agent class to libSkirmishAI.so. The

libSkirmishAI.so then creates instances of the Agent class for each player. Whenever

events are sent from the Spring engine, the libSkirmishAI.so calls the appropriate function

43

on the receiving agent. If the agent needs to call back into the Spring engine, it uses the

clb.so c library to invoke the required function on the Spring engine. The agent interfaces

with clb.so via the ctypes library [32].

This design enables us to use the high-level language, python. The Python developers

created the language to be very readable and expressive. The design of Python includes

functions as first-class objects, dynamic typing, partial functional programming support,

and built-in syntax for dictionaries and lists. These features give us the ability to write the

framework in fewer lines of code than would be required if using a lower level language

like C++ or Java. This saved a great deal of development time and allowed us to write the

agent framework from scratch in under four months!

4.5.4 Agent Design. The agent framework is composed of 16 Python classes.

They are presented in Figure 4.12. The diagram provides a general understanding of each

objects role, including its attributes and methods. Figure 4.13 illustrates the associations

between these classes using a UML class diagram. The addition of the associations

presents a general understanding of the static relationship between the classes.

44

Figure 4.12: Classes of Agent Framework

45

Figure 4.13: Class Diagram

Python classes can be organized into modules which can also contain attributes and

functions. The modular structure for organizing classes and their relationships cannot be

modeled with simple UML class diagrams. To capture the relationship between modules

and classes, Figure 4.14 was created. The eight modules correspond to the eight .py files

46

in the agent framework source code. The arrows in the figure denote dependencies

between modules—in other words, the module the arrow originates with imports the

module the arrow terminates at. Classes defined in a particular module are displayed

inside that module. Also, UML notes are used to list any attributes and functions defined

in the module.

Figure 4.15 shows the use case diagram of our agent. The Spring Engine is an actor

outside our agent system. The use cases map one-to-one with the events listed in Table

4.4. The update use case is periodic while all other use cases are aperiodic. Sequence

diagrams of each use case are provided in Appendix A for a more detailed understanding

of the interactions between the software objects.

47

Figure 4.14: Package Diagram

48

Figure 4.15: Use Case Diagram

49

4.5.5 Grid world. The map dimensions in game units are 4,096 x 4,096 for the

small map, 6,144 x 7,168 for the medium map, and 10,240 x 10,240 for the large map. To

reduce the decision space for the agent, a grid world concept was applied. We partition the

map into square cells. A cell in the grid is 128 game units x 128 game units. Cells of this

size are large enough that any building may be constructed on it while still allowing room

for units to navigate. This data structure, along with its supporting methods, are defined in

the Gird class in the gamemap.py file. The grid is used for building placement and target

selection. Using a single data structure for both algorithms reduces code duplication and

improves readability.

We implement building placement and target selection by searching for the closest

cell that meets certain criteria. For building placement, the cell must be free of any other

construction, and must be suitable for the building type. For target selection, the cell must

contain an enemy unit. Both these problems are solved with the help of a Python

generator [31]. The generator’s input parameters are the coordinates of a starting cell. It

yields the cells in order of closest to furthest from the starting cell. Generators provide a

memory-efficient method for producing large lists as the items are computed lazily—only

when they are needed. We chose to use Manhattan distance as we prefer the trade-off in

increased execution speed and a simplified algorithm over the loss of accuracy when

compared to using euclidean distance. This trade-off is acceptable as our research

objectives requires a real-time agent.

The generator is used by both the building placement and target selection algorithms.

The algorithms only need to implement their respective test criteria to test the generated

cells. They are not concerned with the details of distance from the starting cell, as this

knowledge in encapsulated in the Grid class.

50

4.6 Constraints

Perfect Information. The agent framework operates in a perfect information

environment. A cheating AI is appropriate for military training and education, as it does

not hinder the training. The agents can still display strategic decision making while using

perfect information. On the other hand, using imperfect information, also known as fog of

war in RTS [42], would require implementing a scouting module in the agent framework,

which would be very time consuming. We choose instead to focus our effort in

implementing strategic behavior. Future work will integrate a scouting module into the

framework to allow the agent to operate in an imperfect information environment.

Unit Types. Balanced Annihilation (BA) contains over 317 unit and building types. In

order to keep our framework manageable, we limit the number of unit types to 27. The

unit types the framework supports are as follows:

1. Combat units: The agent supports 16 combat units. They are flea, peewee, rocko,

jethro, hammer, warrior, jeffy, flash, shellshocker, samson, pincer, stumpy, janus,

freedom fighter, banshee, and thunder. The pincer and banshee unit types are not

employed in any of the eight strategies.

2. Construction units: The agent supports four construction units. They are

commander, construction k-bot, construction vehicle, and construction aircraft.

3. Building units: The agent supports seven building types. They are k-bot factory,

vehicle factory, aircraft factory, metal extractor, solar panel, light laser tower, and

anti-air tower.

Including support for additional units is straightforward. The text files config/buildings.txt

and config/unitClasses.txt, located in the agent framework source code directory, are

human-readable ASCII text files and can be edited to include additional units.

51

Naval Warfare. We do not include naval warfare as the Air Force’s interests are more

toward air and land. For this reason, the agent cannot play games on water maps.

4.7 Advancement of AFIT Research in RTS AI

This work is a continuation of the research effort [50] from the Air Force Institute of

Technology (AFIT). We have expanded the work from a land-only domain to include the

air-power domain as well. The number of combat units the agent supports increased from

five unit types to sixteen unit types. The addition of air-power and increase in unit types

allows for a larger variety of strategies. The unit tech level is restricted to tech level 1 in

order to create more balance among the units so no one unit dominates the game. The

agent framework can now play on many different maps; the previous agents could only

play on metal maps and were only tested on a single metal map. The maps employed for

testing have actual metal extraction spots. The use of these maps is more consistent with

actual BA game-play. We doubled the number of static opponents from four to eight.

Having several strategies is important as our focus is on the strategic level of gameplay.

Furthermore, additional opponents may be created by simply defining a new strategy

definition. Previously, to create a new opponent, one had to write an entire script by hand.

Our strategy definition approach is scalable and extensible. The first approach required

training one classifier per opponent. We are able to train a single classifier for all eight

opponents. Because our agent framework may be used as a base to implement future

dynamic agents, both the static agents and the dynamic agents will share the same tactical

algorithms. This allows an objective evaluation of the dynamic agent’s strategy

decision-making performance, when tested against the static agents, as they all share a

common tactical base.

52

4.8 Balanced Annihilation

The BA game was chosen as the platform used to implement our framework. Our

research is focused on strategic AI and not on low-level AI. Acceptable unit-level AI is

built-into BA. Thus we can put our effort into implementing the higher-level AI and leave

the unit-level AI to the BA default implementation. BA is a popular game in RTS AI

research, therefore, there already exist a body of work to build on. Starcraft is also very

popular as an RTS AI research platform. However, BA was chosen for several reasons.

Starcraft is 2D only, while BA is 3D. Since our vision is for CGF in military training, the

additional realism of a 3D environment is preferred. Additionally, Starcraft’s AI API

enforces fog of war—imperfect information. We desired a perfect information

environment to avoid implementing a scouting module, thus, again BA is the better

choice. Furthermore, BA is open source and multi-platform while Starcraft is closed

source and Windows only. So BA provides more flexibility in modifying the engine and

porting the game to new systems. BA supports a larger scale in terms of both number of

units and map size.

For these reasons we claim BA is a good platform to use in attaining our research

goal.

4.9 Chapter Summary

This chapter presents our strategy definition schema, formulates eight strategy

definitions, and explains the design and implementation of our agent framework. With the

agent framework methodology and design defined, the second half of our methodology,

strategy classification, is addressed in the next chapter.

53

5 Real-time Strategy Classification

5.1 Introduction

In the previous chapter, the methodology is explained for achieving the fist three

objectives: defining a strategy schema, formulating strategy definitions, and creating an

agent architecture that can run strategy definitions. We now turn our attention to the

methodology used to achieve the last three objectives: generating a high-quality data set,

creating real-time strategy classifiers, and discovering appropriate counter strategies for

each map. To accomplish these objectives, we run the strategies against each other on all

three maps over several iterations and periodically collect game state observations (unit

types, unit positions, metal and energy statistics). The data set, along with AI techniques,

is used to create classifiers which can classify a given opponent game state observation

into one of the pre-defined basic strategies. This is done by learning the strategy centers or

boundaries in game state observation space. We then find appropriate counter-strategies

for each basic strategy based on the wins and losses of the games played. There are four

steps to creating our classifiers.

1. Data collection

2. Pre-process the raw data set into a more useful form. This involves four sub-steps:

(a) Transform the features into a more practical form.

(b) Drop the first 32 samples of each game.

(c) Using the new data set, create two data sets, one with economy features (Econ)

and one without (No Econ).

(d) Normalize the two data sets across features.

3. Perform feature reduction. Three different approaches are employed:

54

(a) Do nothing and use the data set as is.

(b) PCA

(c) LDA

4. Train the classifier. We use two different algorithms:

(a) K-means clustering plus K-NN algorithm

(b) SVM algorithm

These steps are explained in more detail in the following sections. The final section of this

chapter discusses the discovery of counter strategies from the data set.

To implement the tasks Python [46] scripts were written that leverage the SciPy [15]

and NumPy [26] libraries. NumPy is a numerical package which provides efficient

implementation and manipulation of matrix and array data structures via the internal use

of LAPACK. SciPy builds on NumPy’s features in order to provide a MATLAB-like

environment. Implementations of PCA, LDA, k-means, K-NN and SVM are provided by

the machine learning SciPy extension library scikit-learn [36]. The learning algorithms

provided by scikit-learn are written as classes which expose a consistent object API. This

allows us to abstract our Python test scripts to easily use different types of feature

reduction and classification techniques.

5.2 Data Collection

We play the eight strategies against each other for 20 iterations. Strategies are not

matched-up against themselves. Thus, there are 7×8
2 = 28 different match-ups. Data

collection is performed on three different maps: a small map, a medium map, and a large

map. Using three differently sized maps exposes the strengths and weaknesses of the

different strategies. Additionally, using fewer maps would likely produce biased

experiment results. The maps were selected from popular maps freely available for

55

download from springfiles.com. The actual map names are provided in Table 5.1. Each

match-up is repeated 20 times, therefore a total of (3 maps)·(28 match-ups)·(20

repetitions) = 1,680 games were executed. During each game, we collect a game state

snapshot every 5 seconds (once every 150 game frames or cycles). Each agent is

responsible for collecting its own data. A game state snapshot for an agent consists of the

following items.

1. Frame number (a measure of time) of the match when the state snapshot is taken

2. The type and (x, z) position of each of the agent’s units and buildings

3. Amount, storage capacity, production rate and usage rate of both metal and energy

Additionally, at the end of a game, the agent records whether it won or lost the game.

Table 5.1: Map Names

Small Medium Large
ThePass Eye Of Horus v2 DeltaSiegeDryRevX v3

The samples collected across all the games constitutes our raw data set. We also save

the game replay file for each of the 1,680 games along with the command line output. The

game replay files record all the actions taken in the game and allows any individual to

replay any of the game match-ups on the spring engine with the BA game. The command

line output records any special messages sent by the spring engine. This allows future

researchers to view exactly what transpired in any of the games, if needed, to validate any

assumptions or answer any questions related to game execution. This gives future

researchers more confidence in using our data set instead of generating new data and it

makes our data set more accessible and useful to a larger audience.

Table 5.2 presents the total execution time for all the 560 games on each map as well

as the average time per game, per map, in both real-world time and virtual game time. The

56

larger the map, the more time it takes to play a game as the combat units have longer

distances to travel and the processor has more to compute (i.e. longer trajectories, more

obstacles, etc). The virtual time and real-world time differ because the game simulation is

run at maximum speed. Even though a game frame means 33.3 ms of game time has

elapsed, if the spring engine has completed computing the simulation for the current

frame, instead of sitting idle until a full 33.3 ms elapses, it immediately begins to simulate

the next frame. The speedup from running the spring engine at maximum speed is

included in the table. This allows us to execute all 1,680 games in under 15 hours instead

of the 15 days 21 hr and 36 min it would have taken if running the game simulations at

normal speed. With the production of the raw data complete, the next step is to

pre-process it.

Table 5.2: Data Collection Times
Small Medium Large

Overall Time 2 hr 59 min 00 s 4 hr 57 min 00 s 6 hr 59 min 00 s
Time per Game (Real-world) 19 s 32 s 45 s
Time per Game (Virtual) 10 min 01 s 14 min 03 s 16 min 49 s
Speedup 31.6 26.3 21.3

5.3 Data Pre-processing

The raw data must be transformed into a more useful form. The data set has an entry

for the type and (x, z) position of each unit. This creates a variable number of features

from sample to sample. Instead, we desire a constant number of features. Therefore, the

number of units for each unit type in a sample are counted. So our new data set consists of

samples with the following features.

1. The number of units in play of each unit and building type (24 variables)

2. Amount, storage capacity, production rate and usage rate of both metal and energy

(8 variables)

57

Our agent framework spends the beginning of a game creating its initial economy

which involves constructing metal extractors and solar panels. This happens regardless of

the strategy definition in play (although the strategy definition does control how many

metal extractors and solar panels are built for the initial economy). Therefore, the first

game observations for any of the 8 strategies is almost identical. Trying to classify the

strategy at the beginning of the game is useless because the agents behave very similarly.

Because of this, we drop the first 32 samples from each game. This equates to the first 2

minutes and 40 seconds of the game. Around that time, most strategies have completed

their initial economy and have begun constructing combat units. At this point, the agents

begin to differ in their behavior based on their respective strategy definition.

Two data sets are created; one with economy features (Econ) and one without (No

Econ). The data set with economy features has 32 total features: 24 unit type features and

8 economy features. Thus the data set without the economy futures only has 24. There are

three possible outcomes of including economy features.

1. The economy features may increase the separation of the strategy classes, thus

improving the classifier accuracy.

2. They may contribute little to the separation of the classes, and in turn, have little

impact on classifier accuracy.

3. They may be high-variance and chaotic data, thus decreasing the classifier accuracy.

Creating a high-accuracy classifier is one of the research objectives. Since it is unknown

which data set produces the highest accuracy classifier, both data sets are used in training

and testing the classifiers.

We normalize values for the two data sets across features to give the features equal

weight when training the classifiers. To do this, the data for each feature is linearly

mapped to a range of -1 to 1. So, for a specific feature, the minimum value for the feature

58

maps to -1 and the maximum value for the feature maps to 1 and all other values of the

feature are linearly scaled between -1 and 1.

5.4 Feature Reduction

It is often desirable to reduce the number of features per observation in a data set

prior to training a classifier. The purpose being to reduce the computational overhead of

additional features that do not contribute much information to the classifier-generating

algorithm. Another possible benefit of performing feature reduction is to remove features

that are so chaotic or noisy that they actually deteriorate the accuracy of the trained

classifier. Feature reduction is also known as dimensionality reduction. [14, 17]

The feature reduction methods we utilize both have the same general steps. First,

train the feature reduction model using only the training data set. Then transform the

training data set using the feature reduction model. This results in a data set with fewer

features. Use the transformed training set to train the classifier. Prior to classifying an

observation with the trained classifier, the observation must also be transformed with the

original feature reduction model so the observation is in the same coordinate system as the

trained classifier.

5.4.1 Principal Component Analysis. We apply PCA prior to training the

classifier. PCA is an unsupervised feature reduction technique—it does not consider the

class labels of the samples in the training data set. The feature reduction model of PCA is

simply the eigenvectors of the training data set sorted in descending order by eigenvalue.

The training data set is transformed into a new coordinate system by simply performing

the dot product of the training data set with the eigenvector matrix. Because the

eigenvalues are proportional to the variance contained in the transformed dimensions, the

first dimension (feature) contains the most variance of the data set, the second dimension

(feature) contains the second most variance, and so forth. We chose to keep the first n

59

features and throw away the rest—where the first n features contain 95% of the variance

(computed using the eigenvalues). More details on PCA are available in [14, 17].

5.4.2 Linear Discriminant Analysis. Alternatively, we also apply LDA to our data

sets. LDA is a supervised feature reduction technique—it takes into account the labels of

the training samples. Like PCA, LDA attempts to find a linear combinations of the

features that separates the two classes. Since the data set has eight classes, LDA is

performed seven times for seven one-vs-rest binary analysis resulting in a data set with

only seven total features per observation. For more discussion on LDA, see [14, 17].

5.5 Building a Classifier

Using the processed training data set, classifiers are created to classify real-time

game observations as strategies. The classifier is important as it is the component that will

give future dynamic strategy agents the ability to identify its opponent’s strategy. The

process of training a classifier is in fact a search for class centers or inter-class boundaries

depending on the approach. We employ two classifier training methods, k-means with

K-NN, and SVM. These classifier algorithms were selected for their complementary

strengths and weaknesses. K-means clustering plus K-NN produces a fast executing

classifier. However, it has difficulty dealing with non-separable, overlapping classes

especially since k-means is unsupervised and it forces the clusters to have roughly equal

variance. SVM, while usually slower executing, is better suited for dealing with

non-separable classes because it is a soft-margin classifier. [13, 14, 17]

5.5.1 K-nearest Neighbor on K-means. Our fist method uses use a two-step

approach to create classifiers. Step 1 involves clustering the data set per strategy and step

2 uses the cluster centers as training points for the actual classifier.

K-means Clustering. First, we divide the training data set into game states for each

specific strategy. This produces eight groups of data; each data group has all the player

60

state snapshots of its respective strategy. The game states for each group are clustered

using k-means clustering with k=7. The new clusters are labeled with the group’s strategy.

This process is repeated for all eight groups of data. The 56 (8 strategies * 7 clusters)

points in observation space become our labeled strategy classifier.

K-nearest Neighbor. Classification is performed by using the 56 points as the training

samples for a K-NN classifier. We use one-nearest neighbor with euclidean distance as our

metric. Thus, to classify a game state snapshot, the distance from the snapshot to each of

the 56 points is calculated, and the distances are sorted. The label of the point closest to

the sample snapshot is the classifier’s predicted strategy.

More information on the k-means and K-NN algorithms is available in [14, 17].

5.5.2 Support Vector Machine. We create a second classifier using a SVM. SVM

is a supervised classification technique. It falls within the family of maximum margin

classifiers. That is, it attempts to find hyperplanes that maximize the margin between two

classes.

SVM is an inherently binary classifier, however it can be extended to a multi-class

case by computing pairwise SVM classifiers of all the classes (requires C(C−1)
2 classifiers)

or computing one-vs-rest SVM classifiers for all the classes (requires C − 1 classifiers)

where C is the number of classes (or strategies in our case). In our work we use

one-vs-rest multi-class SVM in addition to the kernel trick with a Gaussian radial basis

function kernel [13]. A more comprehensive SVM treatment is given in [14, 17].

5.6 Learning Counter-Strategies

We use our game win-loss outcomes to find the best counter-strategies for each

strategy. This provides the knowledge to choose a good counter-strategy given the

opponent’s strategy. The best counter-strategy is the strategy with the highest win ratio

with respect to the strategy of interest. Thus, for each strategy, we count the number of

61

wins and subtract the number of losses when played against the other strategies. The

values are sorted in decreasing order and the strategy related to the lowest value is the

most effective counter-strategy.

5.7 Chapter Summary

This chapter presents the methodology used to achieve three research objectives:

generate a high-quality data set, create real-time strategy classifiers, and discover

appropriate counter strategies for each map. To accomplish these objectives, we run the

strategies against each other on all three maps for several iterations and periodically

collect game state observations. The data set along with AI techniques were used to create

strategy classifiers. The data set was also employed in discovering counter-strategies. This

concludes our second chapter on methodology. The next chapter covers the design of

experiments for the implemented agent framework and classifiers.

62

6 Design of Experiments

6.1 Introduction

This chapter reveals how our classifiers are tested using 5-fold cross-validation,

discusses the objectives of our experiments and explains why they are important. It also

describes how the results of the classifier tests are processed to show that the objectives of

the experiments have been met. The objectives of the experiments, inspired by [7], are as

follows:

1. Show the effectiveness of our agent framework in implementing the eight basic

strategies.

2. Compare economy and non-economy data sets in terms of accuracy.

3. Compare original features with the two feature reduction techniques (PCA and

LDA) in terms of accuracy.

4. Compare K-NN and SVM classifiers in terms of accuracy.

5. Find the best combination of data set, feature reduction technique and classifier type

in terms of accuracy.

6. Find the best combination of data set, feature reduction technique and classifier type

in terms of speed of execution.

7. Show both the most accurate classifier and the fastest executing classifier have the

following properties:

(a) The standard deviation of the classifier’s accuracy is under 5% of the mean of

the classifier’s accuracy.

63

(b) The largest delta in accuracy per iteration is less than 5% for each of the three

maps.

(c) The producer accuracy is equal to or greater than 75% for every strategy.

(d) The execution speed is under 10% of a game cycle period (a game cycle period

is 33.3 ms).

(e) The accuracy is above 80% for over 90% of the time.

The remaining sections of this chapter cover the wins-losses and counter-strategies

processing, the classifier testing process, the results processing to reveal the classifier

accuracies, the results processing to reveal the classifier execution speeds, and finally, the

results processing to reveal the properties of the most accurate classifier and fastest

executing classifier. The Wins-losses and Counter-strategies section relates to Objective 1.

The Classifier Accuracy section deals with Objectives 2-5. The Classifier Execution

Speed section covers Objective 6. The Objective 7 is explained in the last section,

Properties of Most Accurate Classifier and Fastest Executing Classifier.

6.2 Wins-losses and Counter-strategies

We desire to meet Objective 1: show the effectiveness of our agent framework in

implementing the eight basic strategies. This objective is important because it validates

the strategy schema concept, our formulation of our eight strategies using the strategy

schema, and most importantly, it provides some means of demonstrating our agent

framework implementation is actually able to play the BA game according to a given

strategy definition.

Win-loss tables and a counter-strategy table are generated to demonstrate the

fulfillment of Objective 1. Three win-loss tables are created; one for each of the three

maps. We played 1,680 games—560 per map. So for the 560 games of given map, the

wins and losses are counted for each strategy match-up. The losses are subtracted from

64

the wins, producing a single number per match-up. Since we repeat each match-up 20

times, the values range from -20 to 20. For an explanation on how the counter-strategy

table is generated, see Section 5.6.

Although Objective 1 is somewhat subjective, we provide a list of measurable

requirements in Table 6.1 to ascertain whether or not the objectives have been met. These

requirements are based on the fundamental RTS concept that no strategy dominates all the

time in every situation. If this were the case, RTS games would be very boring, because

once a player has found the dominant strategy, all players would continually use it, turning

the game into a game of luck where human intelligence has no impact on the outcome of

the game. Proper formulation of the strategy schema, good choices in strategy definitions,

and intelligent design decisions in the agent framework would produce a balanced set of

strategies that all have different strengths and weaknesses and where no one strategy

dominates but all strategies are good choices in certain situations.

Table 6.1: Objective 1 Requirements

Requirement
1 No strategy dominates all other strategies on any map.
2 Every strategy has an overall winning record against at least one strategy on at

least one map.
3 Every strategy is the best counter-strategy for at least one strategy on at least one

map.
4 IR and TR favor smaller maps.
5 Blitz, and Artil favor medium maps.
6 Bomber, Antiair, and Turtle favor large maps.
7 Antiair dominates Bomber.

Requirements 1-3 ensures the agent framework plays each strategy in such a way that

every strategy is useful and valuable. Since IR and TR are rush strategies, they should

favor smaller maps—hence the need for Requirement 4. The Blitz and Artil strategies

have medium initial economies and medium sized armies. For this reason, we expect these

strategies to favor medium maps. Requirement 5 ensures this is true. Requirement 6 deals

65

with strategies that should favor large maps. Specifically, Bomber, Antiair and Turtle,

because they all have large initial economies and produce large and expensive armies.

6.3 Classifier Testing using 5-Fold Cross-validation

We have 5 dimensions of test configurations: maps, data sets, feature reduction

techniques, classifiers, and cross-validation iterations. The possible values for each

dimension are as follows:

• 3 Maps: Small, Medium, and Large

• 2 data sets: with economy features (Econ) and without economy features (No Econ)

• 3 feature reduction techniques: None, PCA, and LDA

• 2 Classifiers: K-NN on K-means and SVM

• 5-fold cross-validation: the experiment is repeated 5 times, each time holding back

a different partition of the data set from the classifier training to be used for testing.

For each combination of the testing dimensions, we perform an experiment. An

experiment consists of training and testing a classifier. The classifier is trained using only

the prescribed training data set and testing is performed with the remaining testing data

set. In total we perform (3 Maps) ·(2 data sets) ·(3 feature reduction techniques) ·(2

Classifiers) ·(5-fold cross-validation) = 180 experiments.

Table 6.2: 5-fold Cross-validation
Data Set Partitions

1 2 3 4 5
Iteration 1 Test Train Train Train Train
Iteration 2 Train Test Train Train Train
Iteration 3 Train Train Test Train Train
Iteration 4 Train Train Train Test Train
Iteration 5 Train Train Train Train Test

66

Table 6.2 illustrates the concept of 5-fold cross-validation used to perform our

experiments. We partition our data set into 5 sections. When an experiment is run, the

iteration of the 5-fold cross-validation dictates which data partition is held back from the

feature reduction and classifier training processes to be used to later test the classifier on.

Thus, for the Kth iteration, the Kth partition becomes the testing set and the remaining

partitions combine to become the training set. This is explained further in Section 7.10.1

of [17] page 242.

Figure 6.1: Experiment Process

Split data
into training
and testing

sets

Data
set

Training
set

Testing
set

Create feature
reduction model

Feature
reduction

model

Reduce
features

Reduce
features

Training
set

Testing
set

Classifier
training

algorithm
ClassifierTest

classifer

Results
(prediction labels

and
actual labels)

Figure 6.1 depicts the experiment process in graphical form. The blue boxes represent

data structures while the white boxes represent processes. A data structure with an arrow

67

going into a process means the data structure is an input to the process. A data structure

with an arrow coming out of a process means the data structure is an output of the process.

The figure clearly reveals that only the training set is used as input to construct the feature

reduction model and the classifier while the testing set is only used to test the classifier.

Completing the 180 experiments produces 180 result files. A result file contains the

predicted strategy label and actual strategy label for each sample in the testing set. The

following sections discuss how we process these results to reveal the knowledge hidden in

the data—knowledge that answers the question have the objectives been met?

6.4 Classifier Accuracy

Objectives 2-5 are important as they allow us to objectively determine how to create

the best classifier in terms of accuracy. The fist 3 objectives help us isolate each of the 3

dimensions of data set, feature reduction technique, and classifier to compare values

within the dimension. Objective 5, on the other hand, looks at every combination of the 3

experiment dimensions to find the best overall combination. This combination can be used

in future work to produce high-accuracy strategy classifiers for RTS game agents.

Objectives 2-5 must be validated. Objectives 2-4 are concerned with comparing the

accuracy of our classifier across 3 of the dimensions of our experiments; data set, feature

reduction technique, and classifier. To accomplish this, we compute the accuracy of each

experiment. The accuracy is defined as the number of samples correctly predicted divided

by the total number of samples in the experiment. The 180 experiments are segregated

into 2 groups; those that used the Econ data set and those that used the No Econ data set.

The mean of each group is computed. This process is repeated for the feature reduction

techniques. The 180 experiment accuracies are segregated into 3 groups; None, PCA, and

LDA. The mean for each group is computed. Finally, the 180 accuracies are segregated

into K-NN and SVM and the mean is computed for each of the 2 groups. This gives us 7

68

values we can use to compare each dimension of our experiments: data set, feature

reduction technique, and classifier.

Objective 5 requires us to find the combination of data set, feature reduction

technique, and classifier that produces the classifier with the highest accuracy. To

accomplish this, we take the same 180 experiment accuracies and split them into 12

groups according to the 12 combinations of data set, feature reduction technique, and

classifier.

6.5 Classifier Execution Speed

Here we examine classifier execution speed in order to answer Objective 6: Find the

best combination of data set, feature reduction technique and classifier type in terms of

speed of execution. This objective is important because execution time is critical in RTS

game simulations. By finding the experiment that produces the fastest executing classifier,

future researchers can use this combination to produce high-speed strategy classifiers for

RTS game agents.

To answer this objective, we examine the execution time elapsed in testing each of

the 180 classifiers. These 180 time values are divided by the respective number of samples

in each testing set to give 180 average, single-sample classification times. Each of the 12

combinations have 15 average, single-sample classification times (from 3 maps × 5

iterations). The 15 values of each combination are averaged. This gives us 12 final values

which represent the mean time to classify a single sample. In addition, we also compute

the standard deviation across the 15 values using the same method used to compute the

mean.

69

6.6 Properties of Most Accurate Classifier and Fastest Executing Classifier

Objective 7 must also be dealt with. For Objective 7 we show by experiment that the

most accurate classifier (revealed in Objective 5) and the fastest executing classifier

(revealed in Objective 6) have the following 5 properties.

1. The standard deviation of the classifier’s accuracy is under 5% of the mean of the

classifier’s accuracy.

2. The largest delta in accuracy per iteration is less than 5% for each of the 3 maps.

3. The producer accuracy is equal to or greater than 75% for every strategy.

4. The execution speed is under 10% of a game cycle period.

5. The accuracy is above 80% for over 90% of the time.

We must produce classifiers that are suitable for online RTS strategy classification.

This is the motivation in examining these 2 classifiers to ensure the above properties. No

matter how accurate a classifier is, if it can’t execute in real-time, it is useless for our

research. In the same way, no matter how quickly a classifier executes, if it has poor

accuracy, it too is not fit to be used as a online RTS strategy classifier. These properties

ensure that our classifiers meet a minimum accuracy bound and maximum execution

speed bound to be considered acceptable classifiers for future research.

Property 1 ensures the classifier is precise. If the standard deviation is greater than

5%, the quality of the accuracy is questionable because the classifier is unable to

consistently produce the same results. To show Property 1, the accuracy table from

Objective 5 in the Classifier Accuracy Section is used.

Property 2, like Property 1, is a precision measure. It measures variance across the

iterations of the 5-fold cross-validation. Hence, having more than 5% delta between

70

iterations calls into question the quality of the accuracy. For Property 2, we construct a

table that gives the accuracy of the classifier for each fold of the 5-fold cross-validation.

To say with confidence that the classifier is accurate, one must ensure it is accurate in

classifying any of the eight strategies. If a classifier has a high overall accuracy, but an

accuracy below 75% for one or more strategy, the classifier cannot be declared accurate

with confidence. Thus, the individual producer accuracies must be inspected to ensure

none are below 75%. Property 3 is shown using a confusion matrix. We create a confusion

matrix for each combination and each map. Thus, (12 combinations)·(3 maps) = 36

confusion matrices are created. Only the three confusion matrices relating to the most

accurate classifier and the 3 matrices relating to the fastest executing classifier are

presented in Chapter 7, the Results Chapter. All 36 matrices can be reviewed in detail in

Appendix B. Each confusion matrix holds the results of all 5 iterations of 5-fold

cross-validation.

Our agent must execute in soft real-time. Its deadline is the period of a game cycle.

Since the game runs at 30 Hz, the period is 33.3 ms. However, the agent does not own all

the compute resources, but must share them with the rest of the RTS game simulation.

Thus, we restrict the classifier to only 10% of the compute resources, leaving the other

90% available for the game simulation. Hence, the classifier’s deadline is 3.3 ms.

Real-time concerns in RTS are discussed further in 2.5. We refer to the execution speed

and standard deviation tables created for Objective 6 in the Classifier Execution Speed

Section to validate Property 4.

Property 5 is intended to ensure the quality of the classifier accuracy over time. If the

classifier is at least 80% accurate for over 90% of the time, we can have confidence that

the accuracy of the classifier will be consistent for the duration of the game. The property

is shown by plotting the average accuracy of the experiment for each of the 3 maps over

71

time. We create one such figure for each of the 12 combinations. These can be examined

in Appendix B.

6.7 Chapter Summary

This chapter presents our 7 objectives and details our 5-fold cross-validation

experiment process. We also discuss the importance of each objective and how we process

the results of our experiments to answer the objectives.

The objectives are discussed along with the wins-losses and counter-strategies

(Objective 1), the classifier accuracy (Objectives 2-5), the classifier execution speed

(Objective 6), and finally, the properties of most accurate classifier and fastest executing

classifier (Objective 7).

Objective 1 is intended to validate the strategy schema concept, the agent framework,

and the strategy definitions in that they work together to produce agents that implement

the intended strategies effectively.

Overall, Objectives 2-7 are chosen to validate our methodology produces strategy

classifiers that are accurate and high speed—appropriate for use in online RTS strategy

classification.

With the discussion on the design of our experiments complete, let us continue into

our actual experiment results.

72

7 Results and Discussion

7.1 Introduction

In this chapter we present experimental results, explain how to interpret the tables

and graphs, and discuss if and how our objectives have been met. The experiment

objectives are enumerated and explained in Chapter 6. The remaining sections of this

chapter cover the win-loss results, the counter-strategies, the Objective 1 requirements, the

classifier accuracies, the classifier execution speeds, the properties of the most accurate

classifier, the properties of the fastest executing classifier, and finally, the strategy

observation fidelity. The Win-loss Results Section and the Counter-strategies Section

along with the Objective 1 Requirements Section discuss Objective 1. The Classifier

Accuracy Section deals with Objectives 2-5. The Classifier Execution Speed Section

covers Objective 6. Objective 7 results are discussed in the next 2 sections, Properties of

Most Accurate Classifier and Properties of the Fastest Executing Classifier.

7.2 Win-loss Results

Tables 7.1-7.3 show the 3 win-loss tables. One for each map: small, medium, and

large. Positive values denote the number of wins while negative values denote the number

of losses. The diagonals are all zeros because we did not test match-ups against like

strategies. The upper and lower triangles give identical information—only inverted. We

use the notation cell (x, y) to indicate the cell at row x, column y. The tables should be

read from beginning of row to top of column.

For example, cell (1, 2), the second cell in the top row, reads IR lost 8 games against

TR. Cell (2, 1) reads TR won 8 games against IR. Both cells contain the same information,

only inverted because they are opposite in perspective. Since we repeat each match-up 20

73

Table 7.1: Number of Wins for each Match-up on the Small Map

IR TR Blitz Artil Bomber Antiair Exp Turtle
IR 0 -8 12 6 20 18 -20 3

TR 8 0 2 10 18 20 2 6
Blitz -12 -2 0 0 -4 10 16 16
Artil -6 -10 0 0 6 18 8 10

Bomber -20 -18 4 -6 0 -20 -4 -10
Antiair -18 -20 -10 -18 20 0 -8 -12

Exp 20 -2 -16 -8 4 8 0 -14
Turtle -3 -6 -16 -10 10 12 14 0

times, the values range from -20 to 20. A 20 means strategy A won all 20 games against

strategy B; while a -20 means strategy A lost all 20 games against strategy B, and so forth.

Table 7.2: Number of Wins for each Match-up on the Medium Map

IR TR Blitz Artil Bomber Antiair Exp Turtle
IR 0 -20 -20 -18 18 8 -19 -20

TR 20 0 -20 9 20 20 6 -17
Blitz 20 20 0 18 -14 -2 16 5
Artil 18 -9 -18 0 4 18 1 -17

Bomber -18 -20 14 -4 0 -18 -15 -20
Antiair -8 -20 2 -18 18 0 -15 -19

Exp 19 -6 -16 -1 15 15 0 -18
Turtle 20 17 -5 17 20 19 18 0

Table 7.3: Number of Wins for each Match-up on the Large Map

IR TR Blitz Artil Bomber Antiair Exp Turtle
IR 0 -20 -20 -20 -6 -4 -20 -20

TR 20 0 -16 12 18 20 7 -17
Blitz 20 16 0 19 -14 -2 18 10
Artil 20 -12 -19 0 -8 2 0 -18

Bomber 6 -18 14 8 0 -20 -20 -20
Antiair 4 -20 2 -2 20 0 -17 -20

Exp 20 -7 -18 0 20 17 0 -19
Turtle 20 17 -10 18 20 20 19 0

74

Table 7.4: Number of Wins for each Match-up across all Maps

Strategy
A

Strategy
B

Wins
on
Small
Map

Wins
on
Medium
Map

Wins
on
Large
Map

Strategy
A

Strategy
B

Wins
on
Small
Map

Wins
on
Medium
Map

Wins
on
Large
Map

IR TR -8 -20 -20 Blitz Bomber -4 -14 -14
IR Blitz 12 -20 -20 Blitz Antiair 10 -2 -2
IR Artil 6 -18 -20 Blitz Exp 16 16 18
IR Bomber 20 18 -6 Blitz Turtle 16 5 10
IR Antiair 18 8 -4 Artil Bomber 6 4 -8
IR Exp -20 -19 -20 Artil Antiair 18 18 2
IR Turtle 3 -20 -20 Artil Exp 8 1 0
TR Blitz 2 -20 -16 Artil Turtle 10 -17 -18
TR Artil 10 9 12 Bomber Antiair -20 -18 -20
TR Bomber 18 20 18 Bomber Exp -4 -15 -20
TR Antiair 20 20 20 Bomber Turtle -10 -20 -20
TR Exp 2 6 7 Antiair Exp -8 -15 -17
TR Turtle 6 -17 -17 Antiair Turtle -12 -19 -20
Blitz Artil 0 18 19 Exp Turtle -14 -18 -19

Table 7.4 presents the same data as the 3 win-loss tables. Here the information is

aggregated into a single table to allow the reader to easily observe how a match-up

behaves across the 3 maps. The notation is the same as with the win-loss tables. A

positive number gives the number of wins of Strategy A over Strategy B; while a negative

number gives the number of losses of Strategy A to Strategy B.

Table 7.5: Number of Winning Records Per Map

Expected
Small Medium Large Affinity Success

IR 5 2 0 Small Yes
TR 7 5 5 Small Yes
Blitz 3 5 5 Medium Yes
Artil 4 4 2 Medium Yes
Bomber 1 1 3 Large Yes
Antiair 1 2 3 Large Yes
Exp 3 3 3 N/A N/A
Turtle 3 6 6 Large Yes

75

In order to give a measure of each strategy’s general performance per map, Table 7.5

is presented.

The values in the table represent the number of positive values that appear in the

strategy’s row for the given win-loss table according to map size. It is the number of

winning records each strategy has in each map. So the larger the value, the better the

strategy’s performance on the given map. The success column refers to whether the

strategy met the Objective 1 requirement of Table 6.1. For example, the Objective 1

requirement for IR is that it performs best on small maps. Clearly we see that IR has more

winning records on the small map than on the large map, so it is considered a success. Exp

does not have an Objective 1 requirement but is included in the table for completeness.

7.3 Counter-strategies

Table 7.6: Counter-strategies

Best Counter-strategies
Strategy Small Map Medium Map Large Map

IR Exp TR Blitz Turtle TR Blitz Artil Exp Turtle
TR TR Blitz Turtle

Blitz IR Bomber Bomber
Artil TR Blitz Blitz

Bomber IR Antiair TR Turtle Antiair Exp Turtle
Antiair TR TR TR Turtle

Exp Blitz Turtle Turtle
Turtle Blitz Blitz Blitz

Using the data of the 3 win-loss tables, we record the most effective counter-strategy

of each strategy on each map. The effectiveness of a counter-strategy is the number of

times it wins over the given strategy. This information is shown in Table 7.6. If a strategy

has multiple counter-strategies for a map, it means that all the listed counter-strategies

scored the same while playing against the strategy. So, any of the listed counter-strategies

are equally effective against the strategy on the given map.

76

7.4 Objective 1 Requirements

Table 7.7: Objective 1 Requirements

Requirement Met
1 No strategy dominates all other strategies on any map. Yes
2 Every strategy has an overall winning record against at least one strategy on at

least one map.
Yes

3 Every strategy is the best counter-strategy for at least one strategy on at least one
map.

Partial

4 TR and IR favor small maps. Yes
5 Blitz and Artil favor medium maps. Yes
6 Bomber, Antiair, and Turtle favor large maps. Yes
7 Antiair dominates Bomber. Yes

Requirement 1. This requirement can be validated by examining the columns in Table

7.6—the Counter-strategies Table. If every entry in any column contains the same

strategy, then that strategy dominates the map of the given column. No strategy dominates

either of the 3 maps. For example, even though TR has a winning record against every

strategy on the Small Map, it is not always the most effective strategy on the map. IR is a

better choice against Blitz and Blitz is a better choice against Exp and Turtle. We

conclude the requirement is fully met.

Requirement 2. This requirement can be validated by scanning the rows of the 3

win-loss maps. If any strategy lacks at least one positive value in its 3 rows (small,

medium and large), then that strategy does not have any winning records. The only row

laking a positive number is IR’s row for the Large Map. However, IR has 7 winning

records for the other 2 maps. Therefore all strategies have at least one winning record and

the requirement is fully met.

Requirement 3. Although all 8 strategies appear as effective counter-strategies, neither

Artil nor Antiair can claim to be the best counter-strategy as they always tie with at least

one other strategy. Antiair is the best counter-strategy against Bomber for the small and

77

large maps, but shares that distinction with TR (Small Map) and Antiar, Exp, and Turtle

(Large Map). However, Antiair consistently performs very well against Bomber for all 3

maps—taken as a whole, it performs better than any other strategy against Bomber.

Therefore, it is still considered a valuable strategy. On the other hand, Artil, while very

effective against IR on the Large Map, shares that distinction with 4 other strategies.

Additionally, whenever Artil has a winning record, there is always another strategy that

outperforms it. This makes Artil’s value as a useful strategy questionable. Therefore, we

conclude this requirement only partially fulfilled.

The reason for Artil’s poor performance is that it does not effectively use its artillery

units. Artil uses the same tactics as all other strategies (with exception to the Bomber

strategy). It moves to the nearest enemy and attacks. To make Artil useful, the agent

framework must be modified to have alternate tactics when artillery units are present in an

attack group. Instead of attacking the nearest enemy, the attack group should target the

closest enemy building. The artillery should be positioned on the outskirts of the enemy

base, at their cannons’ maximum range while still being able to hit the target building.

Only the artillery should fire on the building while the escort tanks remain close to the

artillery to defend them against enemy counter-attacks. Also, the attack group should

retreat if the enemy’s counter-attack is too strong. In this way the agent framework would

better utilize the long rage of the artillery units and likely have a more effective Artil

strategy.

Requirement 4. Both IR and TR have the most winning records on the Small Map,

therefore this requirement is fully met.

Requirement 5. Both Blitz and Artil have their highest winning records on the Medium

Map. However, Blitz ties on the Medium and Large Maps while Artil ties on the Small

and Medium Maps. The ties do not contradict the objective, and overall, the data shows

that they favor the Medium Map, therefore we conclude this requirement as met.

78

Requirement 6. Bomber, Antiair and Turtle have the highest winning record on the

Large Map. This requirement is fulfilled.

Requirement 7. Antiair wins 20, 18, and 20 of 20 games against Bomber on the Small,

Medium, and Large Maps respectively. Therefore, we can conclude that Antiair dominates

Bomber on all maps—this requirement is fully met.

Exp Strategy Definition. Exp ties on all 3 maps and thus does not favor any map. One

may have expected Exp to favor larger maps because it spends a large portion, 45%, of its

resources on build power, economy, and defenses. Also, it builds a large army before

attacking its enemy. These attributes normally benefit from a larger map. On the other

hand, Exp only builds a small initial economy and then begins producing cheap infantry

units. Therefore Exp also possesses attributes which favor small maps. Because of this

mix, we left Exp out of the map size affinity requirement. However, Exp does perform

according to its strategy definition.

Exp outperforms all other strategies against IR on the Small Map. Exp’s success

against IR on the Small Map is due to Exp constructing defenses and building light

infantry units at the beginning of the game. Thus, when IR performs a rush attack, Exp is

already prepared to counter it. Exp has winning records on all maps and is never the worst

strategy on a given map. Therefore, it is a balanced strategy, which does not excel very

often due to this balance—jack of all trades, master of none.

Verdict on Objective 1. Objective 1 is a very broad objective that is difficult to define

completely. The only way for a reviewer to truly appreciate the dynamics of the strategy

schema, agent framework, and strategy definitions is to sit down and watch the games

being played in real-time (which is possible, since we have recorded all 1,680 games for

future researchers to enjoy). We have done our best to make Objective 1 measurable by

defining our seven requirements [Section 6.2]. Six of the seven requirements of Objective

1 are fully met. However, Requirement 3 is only partially met. Therefore, although, the

79

intent of Objective 1 has been fulfilled, it is not perfect. To really complete Objective 1 to

the letter, the agent framework must be improved to better control attack groups with

artillery units as discussed under Requirement 3.

7.5 Classifier Accuracy

Table 7.8: Accuracy Comparison Table

Econ No Econ None PCA LDA Knn SVM
Mean 0.9405 0.9405 0.9409 0.9342 0.9464 0.9285 0.9525

Std Dev 0.0403 0.0399 0.0425 0.0450 0.0304 0.0425 0.0335

Table 7.8 provides the necessary information to answer Objectives 2-4. For the data

set dimension, both Econ and No Econ perform nearly identically for the 180

experiments. In terms of feature reduction techniques, LDA has the highest overall mean

accuracy with the lowest overall variance. SVM also has the highest mean accuracy and

lowest variance when compared with K-NN.

So we find that LDA feature reduction technique and the SVM classifier produce the

highest accuracy value while the choice of data set, in general, has little impact on

accuracy performance.

Table 7.9: Overall Accuracy Means

Econ No Econ
None PCA LDA None PCA LDA

Knn 0.926 0.912 0.943 0.929 0.920 0.941
SVM 0.956 0.955 0.951 0.953 0.949 0.950

Table 7.10: Overall Accuracy Standard Deviations

Econ No Econ
None PCA LDA None PCA LDA

Knn 0.043 0.044 0.031 0.045 0.047 0.034
SVM 0.037 0.035 0.028 0.035 0.037 0.028

80

Now we turn our attention to Objective 5: Find the best combination of data set,

feature reduction technique and classifier type in terms of accuracy. Tables 7.9 and 7.10

provide us with the information needed to answer this objective. Using the Econ data set

with no feature reduction and SVM classifier produces the highest accuracy. Thus our

highest accuracy classifier is defined by the experiment 3-tuple (Econ, None, SVM) and

Objective 5 has been met.

Comparing Table 7.9 with Table 7.8 we see that they both agree that SVM produces

more accurate classifiers than K-NN. However, using no feature reduction technique

produces highest accuracies only for the SVM classifier. With K-NN, it is LDA that

produces the highest accuracy. Additionally, it is interesting to note that the Econ data set

tends to give higher accuracy when using the SVM classifier while the No Econ data set

tends to give higher accuracy when using the K-NN classifier. However, this information

is lost in Table 7.8 as it combines the SVM and K-NN classifers when examining the data

sets, thus making the choice of data set appear to have no impact on the accuracy, when in

fact it does.

Examining Table 7.10 reveals that SVM generally has least variance in its accuracies

when compared with K-NN. Also LDA produces the lowest variance among the feature

reduction techniques.

7.6 Classifier Execution Speed

Objective 6 asks us to find the combination that produces the fastest executing

classifier. To answer the objective we look to Table 7.11. It is immediately evident that

K-NN is much faster than SVN—by 2 orders of magnitude. This is expected as K-NN is

merely computing the euclidean distance between the sample and its 56 labeled points.

SVM, on the other hand, is using support vectors and Gaussian radial basis functions to

determine in what class the samples falls. We see the fastest executing classifier is created

from the combination of (No Econ, LDA, K-NN). Thus, Objective 6 is fulfilled.

81

Table 7.11: Mean of Execution Speed (µs)

Econ No Econ
None PCA LDA None PCA LDA

Knn 8.61 7.46 7.15 8.22 7.39 7.14
SVM 926.40 703.77 898.21 827.31 686.74 762.59

Table 7.12: Standard Deviation of Execution Speed (µs)

Econ No Econ
None PCA LDA None PCA LDA

Knn 0.05 0.08 0.13 0.12 0.13 0.10
SVM 310.86 224.94 247.83 259.28 233.04 176.18

Table 7.12 provides us with the standard deviation of the execution speeds. The

standard deviation is always less than 2% of the mean for K-NN. However, not only is the

SVM slower on overage, it also has large standard deviations. Therefore, the slowest

executing classifier, (Econ, None, SVM), can have an execution speed of almost 2 ms at 3

standard deviations.

7.7 Properties of Most Accurate Classifier

Objective 5 revealed that the most accurate classifier is produced with the

combination (Econ, None, SVM). We show that this classifier carries the 5 properties

defined in Objective 7.

Property 1 requires the standard deviation of the classifier’s accuracy is under 5% of

the mean of the classifier’s accuracy. Table 7.9 shows the mean accuracy is 0.956 and

Table 7.10 shows the standard deviation is 0.037. Therefore, the ratio is 0.037/0.956 =

0.039. This is less than 0.05 so we have validated Property 1.

Property 2 is defined as the largest delta in accuracy per iteration is less than 5% for

each of the 3 maps. This is shown in Table 7.13. The largest delta for the Small, Medium,

82

Table 7.13: Overall Accuracy for Experiment: Econ – None – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.898 0.891 0.913 0.898 0.918
Medium 0.984 0.985 0.984 0.986 0.984

Large 0.981 0.981 0.977 0.979 0.976

and Large Maps is 0.027, 0.002, and 0.005 respectively—all well under 5%. Therefore,

Property 2 also holds true.

Table 7.14: Confusion Matrix for Experiment: Econ – None – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14627 0 0 9 57 0 108 0 14801 98.8%
TR 0 9530 21 210 145 0 0 23 9929 96.0%

Blitz 0 333 10401 66 855 1 0 317 11973 86.9%
Artil 0 505 502 8999 535 16 0 492 11049 81.4%

Bomber 0 12 71 158 9896 30 0 0 10167 97.3%
Antiair 0 3 62 154 2193 8024 0 0 10436 76.9%

Exp 169 0 4 46 2 39 15203 0 15463 98.3%
Turtle 0 399 1357 383 209 48 0 12576 14972 84.0%
Totals 14796 10782 12418 10025 13892 8158 15311 13408

CA 98.9% 88.4% 83.8% 89.8% 71.2% 98.4% 99.3% 93.8% 90.3%

Tables 7.14, 7.15, and 7.16 present the 3 confusion matrices for the experiment. The

far left column lists the actual strategies, while the top row list the predicted strategies.

The second to last column is the total actual samples for each strategy. The second to last

row is the total predicted samples for each strategy. The last column gives the producer

accuracy (PA). PA is computed as the number of correctly predicted samples for a given

strategy divided by the total number of actual samples for the given strategy. The bottom

row gives the consumer accuracy (CA). CA is computed as the number of correctly

predicted samples for given strategy divided by the total number of predicted samples for

the given strategy. The diagonal gives the number of correctly predicted samples for each

strategy. The upper and lower triangles give the counts of mis-predicted samples. For

83

example, looking at Table 7.14, the cell at (1, 5)—row 1, column 5—is read of the 14,801

actual IR samples, the classifier mistakenly predicted 57 as Bomber. This is a producer

focus. Alternatively, for a consumer focus, the cell could be read as of the 13,892 samples

the classifier predicted to be Bomber, 57 where actually IR samples. The number in the

bottom corner is the overall accuracy—it is the sum of the diagonal divided by the sum of

the entire matrix.

Table 7.15: Confusion Matrix for Experiment: Econ – None – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15619 0 0 0 0 0 0 0 15619 100.0%
TR 1 18217 0 0 4 0 0 16 18238 99.9%

Blitz 0 13 18335 7 446 0 0 44 18845 97.3%
Artil 0 8 24 24127 44 37 0 307 24547 98.3%

Bomber 0 26 0 0 11354 0 0 0 11380 99.8%
Antiair 0 2 0 0 1025 11556 0 0 12583 91.8%

Exp 105 0 0 1 14 24 25666 0 25810 99.4%
Turtle 0 0 95 72 39 2 0 25722 25930 99.2%
Totals 15725 18266 18454 24207 12926 11619 25666 26089

CA 99.3% 99.7% 99.4% 99.7% 87.8% 99.5% 100.0% 98.6% 98.5%

Table 7.16: Confusion Matrix for Experiment: Econ – None – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19434 24 0 0 0 0 1 0 19459 99.9%
TR 14 22601 0 0 51 0 0 138 22804 99.1%

Blitz 0 16 23188 9 686 0 0 36 23935 96.9%
Artil 7 18 86 28083 343 23 0 360 28920 97.1%

Bomber 21 5 81 0 13756 0 0 0 13863 99.2%
Antiair 32 0 84 0 1269 14874 0 0 16259 91.5%

Exp 31 26 2 23 19 16 34167 0 34284 99.7%
Turtle 0 7 3 313 302 1 0 29946 30572 98.0%
Totals 19539 22697 23444 28428 16426 14914 34168 30480

CA 99.5% 99.6% 98.9% 98.8% 83.7% 99.7% 100.0% 98.2% 97.9%

84

Property 3 says the producer accuracy is equal to or greater than 75% for every

strategy. To validate this we must examine the classifier’s confusion matrices for each

map. These are shown in Tables 7.14, 7.15 and 7.16. The far right column displays the

producer accuracies. As it is shown, the lowest accuracy occurs in the Small Map with the

Antiair strategy with a value of 76.9%. This is still above the 75% minimum; therefore,

Property 3 holds.

Property 4 is true when the execution speed is under 10% of a game cycle period. A

game cycle period is 33.3 ms; therefore, our classifier must execute in less than 3.3 ms.

We use the worst-case execution speed within 3 standard deviations of the mean execution

time as an upper bound for execution speed. This value is thus equal to or higher than

99.73% of execution speeds. Using Tables 7.11 and 7.12 we can compute this

upper-bound execution speed. The mean execution speed is 0.9264 ms and one standard

deviation is 0.31086 ms. Our upper-bound is 0.9264 + 3 × 0.31086 = 1.859 ms. So our

upper-bound for 99.73% of the execution speeds is still under 3.3 ms; thus the classifier

has Property 4.

Figure 7.1: Accuracy over Time for Experiment: Econ – None – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

85

The final property requires that the accuracy is above 80% for over 90% of the time.

Let us examine Figure 7.1. The maximum game length is 37 minutes. However, the first 2

min 40 s of the game is not classified. Therefore, the game is only classified for 34 min 20

s. The graph shows all three accuracy curves stay above 80% for over 32, min. Thus, the

accuracy curves are above 80% for 32/34.33 = 0.93 of the time. So the property holds.

Since all 5 properties hold, we have achieved half of Objective 7.

7.8 Properties of Fastest Executing Classifier

Objective 6 revealed that the fastest executing classifier is produced with the

combination (No Econ, LDA, K-NN). We show that this classifier carries the 5 properties

defined in Objective 7.

Property 1 requires the standard deviation of the classifier’s accuracy is under 5% of

the mean of the classifier’s accuracy. Table 7.9 shows the mean accuracy is 0.941 and

Table 7.10 shows the standard deviation is 0.034. Therefore, the ratio is 0.034/0.941 =

0.036. This is less than 0.05 so we have validated Property 1.

Table 7.17: Overall Accuracy for Experiment: No Econ – LDA – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.892 0.870 0.916 0.892 0.913
Medium 0.961 0.965 0.956 0.974 0.969

Large 0.972 0.966 0.963 0.952 0.960

Property 2 is defined as the largest delta in accuracy per iteration is less than 5% for

each of the 3 maps. This can be shown in Table 7.17. The largest delta for the Small,

Medium, and Large Maps is 0.046, 0.018, and 0.02 respectively—all under 5%.

Therefore, Property 2 also holds true.

86

Table 7.18: Confusion Matrix for Experiment: No Econ – LDA – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14673 0 11 0 20 0 97 0 14801 99.1%
TR 0 9699 70 101 27 0 0 32 9929 97.7%

Blitz 59 551 10051 282 552 2 0 476 11973 83.9%
Artil 28 768 264 9420 127 0 0 442 11049 85.3%

Bomber 104 87 331 37 8883 643 0 82 10167 87.4%
Antiair 105 62 374 88 1917 7832 0 58 10436 75.0%

Exp 395 9 0 5 0 0 15015 39 15463 97.1%
Turtle 58 831 461 553 60 60 0 12949 14972 86.5%
Totals 15422 12007 11562 10486 11586 8537 15112 14078

CA 95.1% 80.8% 86.9% 89.8% 76.7% 91.7% 99.4% 92.0% 89.6%

Table 7.19: Confusion Matrix for Experiment: No Econ – LDA – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15594 0 0 0 0 0 25 0 15619 99.8%
TR 1 18179 0 0 0 0 22 36 18238 99.7%

Blitz 0 115 17891 153 353 1 0 332 18845 94.9%
Artil 3 232 262 23692 9 49 4 296 24547 96.5%

Bomber 0 3 90 0 10714 572 0 1 11380 94.1%
Antiair 10 16 91 5 706 11740 4 11 12583 93.3%

Exp 370 7 0 5 0 8 25415 5 25810 98.5%
Turtle 2 699 607 181 0 44 0 24397 25930 94.1%
Totals 15980 19251 18941 24036 11782 12414 25470 25078

CA 97.6% 94.4% 94.5% 98.6% 90.9% 94.6% 99.8% 97.3% 96.5%

Property 3 says the producer accuracy is equal to or greater than 75% for every

strategy. To validate this we must examine the classifier’s confusion matrices for each

map. These are shown in Tables 7.18, 7.19 and 7.20. The far right column displays the

producer accuracies. As it is shown, the lowest accuracy occurs in the Small Map with the

Antiair strategy with a value of 75.0%. This is equal to the 75% minimum; therefore,

Property 3 holds.

Property 4 is true when the execution speed is under 10% of a game cycle period. A

game cycle period is 33.3 ms; therefore, our classifier must execute in less than 3.3 ms.

87

Table 7.20: Confusion Matrix for Experiment: No Econ – LDA – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19430 26 0 0 0 0 3 0 19459 99.9%
TR 10 22773 0 21 0 0 0 0 22804 99.9%

Blitz 1 139 22801 14 273 1 0 706 23935 95.3%
Artil 40 269 210 27468 22 11 3 897 28920 95.0%

Bomber 27 20 410 0 13108 202 0 96 13863 94.6%
Antiair 7 7 421 1 890 14826 12 95 16259 91.2%

Exp 179 27 5 6 0 0 34042 25 34284 99.3%
Turtle 6 555 968 450 0 2 4 28587 30572 93.5%
Totals 19700 23816 24815 27960 14293 15042 34064 30406

CA 98.6% 95.6% 91.9% 98.2% 91.7% 98.6% 99.9% 94.0% 96.3%

Figure 7.2: Accuracy over Time for Experiment: No Econ – LDA – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

We use the worst-case execution speed within 3 standard deviations of the mean execution

time as an upper bound for execution speed. This value is thus equal to or higher than

99.73% of execution speeds. Using Tables 7.11 and 7.12 we can compute this

upper-bound execution speed. The mean execution speed is 0.00714 ms and one standard

deviation is 0.0001 ms. Our upper-bound is 0.00714 + 3 × 0.0001 = 0.00744 ms. So our

88

upper-bound for 99.73% of the execution speeds is still well under 3.3 ms; thus the

classifier has Property 4.

The final property requires that the accuracy is above 80% for over 90% of the time.

Let us examine Figure 7.2. The maximum game length is 37 minutes. However, the first 2

min 40 s of the game is not classified. Therefore, the game is only classified for 34 min 20

s. The graph shows all three accuracy curves stay above 80% for over 33, min. Thus, the

accuracy curves are above 80% for 33/34.33 = 0.96 of the time. So the property holds.

Since all 5 properties hold, we have achieved the other half of Objective 7.

7.9 Strategy Observation Fidelity

It is important to consider these results are for a 5 second period. In other words,

using any of these classifiers, the agent could predict the opponent’s strategy once every 5

seconds with the above accuracies. However, this strategy fidelity is much higher than is

actually needed in practice. In reality, a player does not change strategy every 5

seconds–not even every minute. A player may only change strategies a handful of times

during the entire game—or if the initial strategy works well, the player may not change

strategies at all. It takes time to actually transition from one strategy to another. Changing

strategies likely involves building units of different types and/or constructing new

buildings. Thus, changing strategies too often results in wasted resources, since the player

invests in one strategy but never gets to see any return on the investment because the

player changes to the next strategy before fully applying the previous strategy. The player

never makes any real progress towards the goal of winning the game because all the

player’s resources are wasted transitioning between strategies.

The agent really doesn’t need to predict the opponent’s strategy every 5 seconds.

Predicting the strategy every minute is fast enough since the opponent is not be able to

change strategies successfully more than once per minute. Therefore, the effective

accuracy of the agent can be much higher if instead of using a single prediction every 5

89

seconds, it uses the 12 predictions in the last minute (5 * 12 = 60) to create a set of 12

votes. The agent then takes the highest voted strategy as the predicted strategy. The

general equation for determining the effective accuracy is given by Equation 7.1 where n

is the total number of votes and p is the producer accuracy for the given strategy. In other

words p is the probability of a vote being correct. Of course, this equation assumes the

opponent does not change his strategy during the course of collecting the n sample

predictions.

EffectiveAccuracy(n, p) =

n∑
k=n/2+1

(
n
k

)
pk(1 − p)n−k (7.1)

probability(k, n) =

(
n
k

)
pk(1 − p)n−k (7.2)

This equation actually gives a lower-bound, worst-case accuracy. We assume that if

any of the votes are wrong, they all predict the same wrong strategy. In other words, it is

the probability that the agent receives at least n/2 + 1 correct votes. This is the same

equation one would use to determine the probability of flipping heads at least n/2 + 1 times

using a biased coin with probability of heads = p. It is based on Equation 7.2 which gives

the probability of exactly k successes in n independent Bernoulli trials, with probability of

success p and probability of failure 1 − p as defined in Section 6.2 on page 407 of [33].

Table 7.21: Effective Accuracy for 1 min Fidelity

Producer Accuracy for a Given Strategy (p)
0.70 0.75 0.80 0.85 0.90 0.95

6 0.74 0.83 0.90 0.95 0.98 0.997
12 0.88 0.95 0.98 0.995 0.9995 0.99999
18 0.94 0.98 0.996 0.9995 0.99998 0.9999999

Table 7.21 gives the effective accuracies for p = 0.70 to 0.95 in increments of 0.05

and for n = 6, 12 and 18. Let us consider the experiment using the data set without

economy features, LDA feature reduction, and the K-NN classifier on the small map. The

90

confusion matrix is shown in Table 7.18. The lowest producer accuracy occurs with the

Antiair strategy at 0.75. Using the recommended 12 sample predictions per minute, even

the worst case producer accuracy, our effective accuracy would be 0.88—a 13% increase.

7.10 Chapter Summary

We have presented our results and discussed our objectives for the win-loss results,

counter-strategies, classifier accuracy, classifier execution speed, the properties of the

most accurate classifier, and lastly, the properties of the fastest executing classifier.

Additionally, we have explored the implications of the strategy observation fidelity.

Of our 7 objectives, Objectives 2-7 are fully satisfied. Only Objective 1 is a partial

success. Although our agent framework largely meets the intent of Objective 1, there is

still some room for improvement. Specifically, the agent framework tactics should be

improved when artillery units are present in an attack group to better utilize the strengths

and capabilities of the aforementioned artillery units so that strategy definitions which

leverage artillery units will be more effective. This is discussed in Section 7.4. As it is,

including artillery units in one’s strategy definition is likely to be a poor choice as the

artillery units will not be used to their full potential. However, creating a strategy

definition without the artillery units can be very effective as we have shown in Sections

7.2 through 7.4 with our other seven strategy definitions.

The presentation of experiment results is complete and we now move into the

conclusion and discussion of future work.

91

8 Conclusion and Future Work

8.1 Conclusion

This research effort is concerned with the advancement of computer generated forces

AI for Department of Defense (DoD) military training and education. The vision of this

work is agents capable of perceiving and intelligently responding to opponent strategies in

real-time. The research goal is to lay the foundations for such an agent using the Balanced

Annihilation real-time strategy (RTS) game running on the Spring engine. We defined six

RTS AI research objectives in Chapter 1. The first four research objectives are 1) create a

strategy definition schema, 2) formulate eight strategy definitions, 3) design and

implement an agent framework, and 4) generate a data set. These four research objectives

are evaluated with Experiment Objective 1 [Sections 6.2, 7.4]. Research Objective 5,

create an accurate, real-time strategy classifier, is evaluated with experiment objectives

2-7 [Sections 6.4-6.6, 7.5-7.8]. Research Objective 6, build a counter-strategy table, is

also evaluated with Experiment Objective 1 [Sections 6.2, 7.4]. The following paragraphs

address the success of each research objective.

Strategy Definition Schema. The strategy definition schema concept, defined in

Section 4.2.1, is very successful as it was the driving vision behind the agent architecture

and shaped it into a very flexible design able to accommodate a wide range of strategies.

Typically, researchers in RTS AI create hand-scripted agents to run experiments [Chapter

2]. If future researchers want to expand on the work by using more agents with new

behavior, they have to hand-code each agent—a tedious and time consuming task. On the

other hand, our work has produced an agent framework that can provide thousands of

agents by simply varying the strategy definition. Future researchers can harness the

flexibility of the schema to quickly and easily create new agent behavior by writing simple

strategy definitions. However, the schema cannot be evaluated in isolation. It is the

92

conceptual groundwork on top of which the strategy definitions and the agent framework

are built. To assess the schema’s value, the schema, strategy definitions, and framework

must be examined as a whole. That is why Experiment Objective 1 serves as an evaluation

for the first four research objectives.

Eight Strategy Definitions. The strategy definitions are presented in Table 4.3 of

Section 4.2.11. This research objective is to formulate 8 balanced strategy definitions.

Experiment Objective 1 is intended to validate the balanced property of our strategy

definitions—specifically, the first 3 requirements of Experiment Objective 1 found in

Table 6.1 of Section 6.2. By meeting these requirements, we show that each strategy is

useful and has value while no one strategy dominates all others. We also show that our

strategy schema is able to represent a wide range of strategies. However, like the strategy

definition schema, the strategy definitions are useless on there own—merely concepts and

ideas. It is these ideas together with the implemented agent framework that gives us a

something measurable!

Agent Framework. The agent framework is designed with the capability of playing any

strategy definable with our strategy definition schema. The concept of the strategy

definition schema drove the agent design decisions. The agent framework is the

realization of the schema concept and the implementation engine of the strategy

definitions. One area should be improved to fully meet Requirement 3 [Sections 6.2, 7.4].

The issue is exposed in the Artil strategy. The agent framework tactics when controlling

attack groups with artillery present must be improved to leverage the artillery units’

strengths and negate its weaknesses. However, the experiments validate the agent can

control the other 13 units correctly and is able to play the other seven strategies effectively.

Aside from the minor issue of artillery control, all the requirements are met and

Experiment Objective 1 is fulfilled.

93

There is still one more property that should be discussed before claiming success

over Research Objective 3. Our research objective requires an agent framework that

executes in real-time. The real-time property of the agent framework is validated in

Section 5.2 by Table 5.2. The “Speedup” row gives the average speedup of the games

executed during data collection. The entire game simulation, in addition to running 2 of

our agents, is able to execute approximately 21 to 31 times faster that normal game speed.

This means the agents, on average, are able to compute over 20 game cycles in the time

allotted for only one game cycle. Although this does not prove the agent can meet a hard

real-time requirement, it does validate the agent framework’s ability to meet the soft

real-time requirement—that is, the mean time for the agent to executes a cycle is much

lower than the time allotted for a game cycle!

Thus, the agent framework is both real-time and effective in playing our 8 strategy

definitions. In other words, we have successfully fulfilled Research Objective 3.

Data Set. Our data collection process is explained in Chapter 5: Real-time Strategy

Classification. We have collect 1,680 games, on 3 different maps, using 8 strategies. This

provides a large, varied data set. The game observations include unit positions, which

were not used but may be of interest to other areas of RTS research. We have also recorded

all 1,680 game replays and command line outputs, which allows future researchers to

examine exactly what transpired in each and every game. Researchers can validate our

data set and have confidence knowing what they are using. Because of the size, breadth,

and transparency of our data set, and our success in using it for training strategy classifiers

and finding counter-strategies, we conclude Research Objective 4 is fulfilled.

Strategy Classifier. The strategy classifier builds on the products of the previous four

research objectives. Hence it has six experiment objectives to meet. Because validating

the classifier also validates the data set, which in turn validates the schema, definitions,

and framework, most of our testing effort revolved around the strategy classifiers. We

94

found that using the (Econ, None, SVM) combination produced the most accurate

classifier; while using the (No Econ, LDA, K-NN) combination produced the fastest

executing classifier. Both classifiers have accuracies that exceed the 85% minimum and

execution times below the 3 ms maximum. Therefore, we have successfully met Research

Objective 5.

Counter-Strategy Table. The counter-strategy table is trivial to construct as it merely

builds on the successes of research objectives 1-4. Creating well balanced strategy

definitions and an agent framework that can effectively play the strategies produced a

research platform we could use for data collection. With the data set in hand, finding

counter-strategies is as simple as counting wins and losses for each match-up on each map.

Through this research effort, we have provided the RTS AI field with six

contributions available for future research in strategy-focused RTS AI which will benefit

both military and academic institutions:

1. Strategy definition schema effective in defining a range of RTS strategies.

2. Seven strategy definitions

3. Real-time agent framework able to play any strategy expressible by our strategy

definition schema

4. Strategy-focused, RTS game data set

5. Accurate, real-time strategy classifier

6. Effective counter-strategy table

These contributions lay a foundation for a truly dynamic real-time RTS agent able to

perceive and adapt to opponent strategies. And this foundation is exactly the goal we were

aiming to achieve!

95

8.2 Future Work

8.2.1 Dynamic Strategy Agent. As revealed in the Introduction Chapter, our vision

is to create an agent that can perceive and respond to opponent strategy. The next logical

step in our research is to use the contributions of this thesis work—the agent framework,

classifier and counter-strategy table—to create a dynamic strategy agent. The agent

framework must be modified as follows. It should periodically (we suggest every 5

seconds) collect the opponent’s game state and use our classifier to predict the opponent’s

strategy. Then, over a larger period of time (we suggest every minute), use the n most

recent predictions as strategy votes. The strategy with the most votes wins. Then the agent

should use the counter-strategy table to lookup an effective strategy to counter the

predicted opponent’s strategy with. In addition, the agent should construct economy

structures (metal extractors an solar panels) and defensive structures (light laser towers

and anti-air turrets) whenever it is unsure of the opponents strategy. This would be the

case for approximately the first 2 min 40 s of the game. The modifications to the agent

framework are minimal—just a few dozen lines of code. But the effect is a first generation

dynamic strategy agent for RTS games.

8.2.2 Design of Experiments. Once a dynamic strategy agent is constructed, the

dynamic strategy concept must be validated. Suggestions for testing a dynamic strategy

agent follow:

Static Strategy Agents. Test the modified agent framework against the original 8

strategy definitions. In other words, the opponent is given a basic strategy to implement

and does not deviate from the given strategy for the duration of the game. The motivation

for this testing is to show the dynamic strategy agent can recognize the basic strategies

and respond with appropriate, simple, counter-strategies. The agent is expected to

performs very well since these are the same 8 strategies used to train the classifier and

counter-strategy table.

96

Scripted Strategy Agents. Test our dynamic strategy agent against agents with

changing strategy definitions. The opponent has a script which dictates what strategy

definitions are to be used and when to implement them. The motivation for this testing is

to show the agent can dynamically detect changes in basic, opponent strategies and

respond with appropriate, simple counter-strategies.

Random Agent. Modify the agent framework to include a “random” mode where the

agent randomly selects a strategy from the 8 strategy definitions every minute, and plays

that strategy. The random agent has the exact same internal structure as our dynamic

strategy agent; however, it replaces the classifier and counter-strategy table with a

component that chooses a random counter-strategy at each cycle. Test the random agent

against the static strategy agents and scripted strategy agents. Also, play the dynamic

strategy agent against the random agent directly. Compare the performance of our

dynamic strategy agent with the random agent. This experiment provides a ground truth to

determine what performance improvements from the dynamic strategy agent are due to

the novel AI algorithms and data structures (classifier and counter-strategy selection) used

to make strategic decisions as opposed to the tactics built into agent framework.

8.2.3 Counter-Strategies. In order to create the counter-strategy table, we limited

the search space to the 8 original strategy definitions. However, this restriction is not

necessary. Future research could involve searching for optimal counter-strategies for each

of the 8 strategies on each map. This could greatly improve the performance of the

dynamic strategy agent as well as lead to the automated discovery of “good” strategy

definitions with little or not human intervention required.

One search approach could use an evolutionary algorithm to generate and search

strategy definitions to find an “optimal” counter-strategy for each strategy. Strategy

variables become the parameters of integer-valued chromosomes.

97

The fitness function can be computed by running a number of games against the

agent using a strategy definition in the population. This is an expensive fitness function,

requiring approximately 20 to 45 seconds, on average, to compute if the game is run at

maximum speed. However, the algorithm is easily parallelizable, since each game can be

executed on a separate machine.

8.2.4 Other Thoughts on Future Work.

• Integrate a scouting module into the framework to allow for operation in imperfect

information environments (i.e. fog of war)

• Integrate tactical-level contributions from recent RTS AI research [Chapter 2] into

the framework

• Expand number of strategies.

• Build a simulator for faster learning. This will allow a more practical

implementation of a genetic algorithm to find optimal counter-strategy definitions.

• Test against human opponents.

• Port approach to real-word Air Force wargames used for educating and training

future strategic thinkers.

• Port approach to the Stracraft Brood War API [18] and test in annual Starcraft AI

competitions [10, 24].

8.3 Final Remarks

With exception of the artillery units, all the objectives of the research have been

achieved and the goal successfully met. We have laid the foundations for a dynamic

strategy agent with our agent framework and strategy classifier. These are large pieces of

the puzzle; the vision of creating dynamic strategy agents for RTS games is now much

98

closer to reality. Once the dynamic strategy agent concept is validated, these

methodologies and techniques can be ported to computer generated forces of

next-generation DoD wargames to enhance military training and education.

99

Appendix A: Sequence Diagrams

For each use case presented in Figure 4.15, a sequence diagram is depicted below in

Figures A.1 trough A.10. As with the use case diagram, the Spring Engine is rendered as

an actor outside the Agent system. The objects in the sequence diagrams are labeled by

Class name. The Class names can be cross-referenced with Figures 4.12, 4.13, and 4.14.

Figure A.1: Update Sequence Diagram

100

Figure A.2: Unit Created Sequence Diagram

Figure A.3: Unit Finished Sequence Diagram

101

Figure A.4: Unit Idle Sequence Diagram

102

Figure A.5: Unit Damaged Sequence Diagram

Figure A.6: Unit Destroyed Sequence Diagram

103

Figure A.7: Enter Line of Sight Sequence Diagram

Figure A.8: Leave Line of Sight Sequence Diagram

104

Figure A.9: Enemy Destroyed Sequence Diagram

Figure A.10: Enemy Finished Sequence Diagram

105

Appendix B: Complete Experiment Results

B.1 Win–loss

Tables B.1, B.2 and B.3 provide the number of wins, ties, and losses for each

match-up among the eight strategies for the small, medium and large maps respectively.

Each strategy in the first column is player 1 and the each strategy in the top row is player

2. So the cell in row 2, column 1 is read as tank rush (TR) winning against infantry rush

(IR) 9 times, tying infantry rush 0 times and loosing to infantry rush once.

Table B.1: Number of Wins, Ties, and Losses for each Match-up on the Small Map

IR TR Blitz Artil Bomber Antiair Exp Turtle
W T L W T L W T L W T L W T L W T L W T L W T L

IR 5 0 5 6 0 4 7 0 3 10 0 0 10 0 0 0 0 10 4 1 5
TR 9 0 1 1 0 9 5 0 5 9 0 1 10 0 0 4 0 6 7 0 3

Blitz 0 0 10 0 0 10 5 0 5 4 0 6 6 0 4 9 0 1 8 0 2
Artil 4 0 6 0 0 10 5 0 5 5 0 5 10 0 0 7 0 3 7 0 3

Bomber 0 0 10 0 0 10 6 0 4 2 0 8 0 0 10 3 0 7 2 0 8
Antiair 1 0 9 0 0 10 1 0 9 1 0 9 10 0 0 2 0 8 2 0 8

Exp 10 0 0 3 0 7 1 0 9 3 0 7 5 0 5 6 0 4 1 0 9
Turtle 3 0 7 4 0 6 0 0 10 2 0 8 7 0 3 8 0 2 8 0 2

Table B.2: Number of Wins, Ties, and Losses for each Match-up on the Medium Map

IR TR Blitz Artil Bomber Antiair Exp Turtle
W T L W T L W T L W T L W T L W T L W T L W T L

IR 0 0 10 0 0 10 1 0 9 9 0 1 6 0 4 0 0 10 0 0 10
TR 10 0 0 0 0 10 6 4 0 10 0 0 10 0 0 7 0 3 1 1 8

Blitz 10 0 0 10 0 0 10 0 0 2 0 8 3 0 7 10 0 0 5 4 1
Artil 10 0 0 0 7 3 1 0 9 8 0 2 10 0 0 3 5 2 0 0 10

Bomber 0 0 10 0 0 10 9 0 1 6 0 4 1 0 9 2 1 7 0 0 10
Antiair 2 0 8 0 0 10 4 0 6 1 0 9 10 0 0 2 1 7 0 1 9

Exp 9 1 0 4 0 6 2 0 8 3 4 3 10 0 0 10 0 0 0 0 10
Turtle 10 0 0 10 0 0 4 1 5 8 1 1 10 0 0 10 0 0 9 0 1

106

Table B.3: Number of Wins, Ties, and Losses for each Match-up on the Large Map

IR TR Blitz Artil Bomber Antiair Exp Turtle
W T L W T L W T L W T L W T L W T L W T L W T L

IR 0 0 10 0 0 10 0 0 10 1 0 9 4 0 6 0 0 10 0 0 10
TR 10 0 0 1 0 9 6 4 0 9 0 1 10 0 0 4 3 3 1 1 8

Blitz 10 0 0 9 0 1 9 1 0 2 0 8 4 0 6 10 0 0 6 1 3
Artil 10 0 0 0 4 6 0 0 10 2 0 8 5 0 5 4 5 1 0 2 8

Bomber 4 0 6 0 0 10 9 0 1 6 0 4 0 0 10 0 0 10 0 0 10
Antiair 6 0 4 0 0 10 5 0 5 4 0 6 10 0 0 0 1 9 0 0 10

Exp 10 0 0 0 4 6 1 0 9 4 5 1 10 0 0 9 0 1 0 1 9
Turtle 10 0 0 10 0 0 1 1 8 10 0 0 10 0 0 10 0 0 10 0 0

B.2 Overall Accuracy

Tables B.4 through B.15 show the overall accuracy of the experiments for the 12

combinations of data set, feature reduction technique, and classifier. The accuracies are

given for each iteration and map size.

Table B.4: Overall Accuracy for Experiment: Econ – None – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.856 0.848 0.889 0.870 0.869
Medium 0.944 0.949 0.950 0.965 0.960

Large 0.962 0.961 0.954 0.964 0.952

Table B.5: Overall Accuracy for Experiment: Econ – None – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.898 0.891 0.913 0.898 0.918
Medium 0.984 0.985 0.984 0.986 0.984

Large 0.981 0.981 0.977 0.979 0.976

107

Table B.6: Overall Accuracy for Experiment: Econ – PCA – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.837 0.829 0.865 0.858 0.872
Medium 0.927 0.952 0.927 0.962 0.946

Large 0.944 0.937 0.935 0.944 0.938

Table B.7: Overall Accuracy for Experiment: Econ – PCA – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.893 0.892 0.914 0.918 0.921
Medium 0.980 0.983 0.983 0.986 0.986

Large 0.977 0.977 0.976 0.972 0.973

Table B.8: Overall Accuracy for Experiment: Econ – LDA – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.901 0.875 0.908 0.905 0.919
Medium 0.963 0.966 0.969 0.969 0.970

Large 0.962 0.964 0.960 0.957 0.957

Table B.9: Overall Accuracy for Experiment: Econ – LDA – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.913 0.888 0.934 0.912 0.930
Medium 0.954 0.979 0.968 0.973 0.976

Large 0.975 0.973 0.966 0.966 0.963

Table B.10: Overall Accuracy for Experiment: No Econ – None – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.839 0.857 0.898 0.858 0.892
Medium 0.960 0.965 0.947 0.967 0.971

Large 0.960 0.964 0.944 0.952 0.956

108

Table B.11: Overall Accuracy for Experiment: No Econ – None – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.896 0.889 0.910 0.913 0.916
Medium 0.978 0.978 0.973 0.977 0.978

Large 0.980 0.979 0.977 0.977 0.974

Table B.12: Overall Accuracy for Experiment: No Econ – PCA – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.854 0.836 0.866 0.858 0.867
Medium 0.963 0.963 0.943 0.956 0.971

Large 0.955 0.952 0.948 0.946 0.930

Table B.13: Overall Accuracy for Experiment: No Econ – PCA – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.884 0.888 0.901 0.907 0.911
Medium 0.976 0.975 0.973 0.976 0.977

Large 0.978 0.977 0.976 0.976 0.968

Table B.14: Overall Accuracy for Experiment: No Econ – LDA – Knn

Map Iteration
Size 1 2 3 4 5

Small 0.892 0.870 0.916 0.892 0.913
Medium 0.961 0.965 0.956 0.974 0.969

Large 0.972 0.966 0.963 0.952 0.960

Table B.15: Overall Accuracy for Experiment: No Econ – LDA – SVM

Map Iteration
Size 1 2 3 4 5

Small 0.903 0.890 0.926 0.924 0.923
Medium 0.962 0.975 0.967 0.975 0.973

Large 0.972 0.970 0.966 0.964 0.963

109

B.3 Confusion Matrices

Tables B.16 through B.51 present the 36 confusion matrices from the experiments.

The far left column lists the actual strategies, while the top row list the predicted

strategies. The second to last column is the total actual samples for each strategy. The

second to last row is the total predicted samples for each strategy. The last column gives

the producer accuracy (PA). PA is computed as the number of correctly predicted samples

for a given strategy divided by the total number of actual samples for the given strategy.

The bottom row gives the consumer accuracy (CA). CA is computed as the number of

correctly predicted samples for given strategy divided by the total number of predicted

samples for the given strategy. The diagonal gives the number of correctly predicted

samples for each strategy. The upper and lower triangles give the counts of mis-predicted

samples. For example, looking at Table B.16, the cell at (1, 5)—row 1, column 5—is read

of the 14,801 actual IR samples, the classifier mistakenly predicted 32 as Bomber. This is

a producer focus. Alternatively, for a consumer focus, the cell could be read as of the

12,856 samples the classifier predicted to be Bomber, 32 where actually IR samples. The

number in the bottom corner is the overall accuracy—it is the sum of the diagonal divided

by the sum of the entire matrix. Each confusion matrix contains the results of all 5

iterations of 5-fold cross-validation.

110

Table B.16: Confusion Matrix for Experiment: Econ – None – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14758 0 0 0 32 11 0 0 14801 99.7%
TR 0 9532 51 196 30 7 0 113 9929 96.0%

Blitz 130 788 9950 325 285 212 0 283 11973 83.1%
Artil 55 863 558 9123 168 35 0 247 11049 82.6%

Bomber 76 74 162 32 9166 652 0 5 10167 90.2%
Antiair 99 49 149 68 3036 7034 0 1 10436 67.4%

Exp 1209 7 29 24 9 0 14179 6 15463 91.7%
Turtle 63 864 1833 256 130 31 0 11795 14972 78.8%
Totals 16390 12177 12732 10024 12856 7982 14179 12450

CA 90.0% 78.3% 78.1% 91.0% 71.3% 88.1% 100.0% 94.7% 86.6%

Table B.17: Confusion Matrix for Experiment: Econ – None – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15618 0 0 0 0 0 1 0 15619 100.0%
TR 0 18228 7 1 0 0 0 2 18238 99.9%

Blitz 0 290 17585 208 7 97 0 658 18845 93.3%
Artil 0 147 510 23605 41 77 0 167 24547 96.2%

Bomber 4 69 348 0 10676 283 0 0 11380 93.8%
Antiair 1 13 362 0 1102 11105 0 0 12583 88.3%

Exp 1332 3 15 0 35 19 24406 0 25810 94.6%
Turtle 0 122 1025 108 2 29 0 24644 25930 95.0%
Totals 16955 18872 19852 23922 11863 11610 24407 25471

CA 92.1% 96.6% 88.6% 98.7% 90.0% 95.7% 100.0% 96.8% 95.4%

Table B.18: Confusion Matrix for Experiment: Econ – None – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19239 56 0 0 0 0 164 0 19459 98.9%
TR 1 22675 14 6 17 11 0 80 22804 99.4%

Blitz 0 216 22735 81 144 114 0 645 23935 95.0%
Artil 0 340 488 27481 95 87 0 429 28920 95.0%

Bomber 0 35 426 18 12903 474 0 7 13863 93.1%
Antiair 0 46 427 18 1201 14556 0 11 16259 89.5%

Exp 521 65 22 4 45 7 33606 14 34284 98.0%
Turtle 0 94 487 807 54 68 0 29062 30572 95.1%
Totals 19761 23527 24599 28415 14459 15317 33770 30248

CA 97.4% 96.4% 92.4% 96.7% 89.2% 95.0% 99.5% 96.1% 95.9%

111

Table B.19: Confusion Matrix for Experiment: Econ – None – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14627 0 0 9 57 0 108 0 14801 98.8%
TR 0 9530 21 210 145 0 0 23 9929 96.0%

Blitz 0 333 10401 66 855 1 0 317 11973 86.9%
Artil 0 505 502 8999 535 16 0 492 11049 81.4%

Bomber 0 12 71 158 9896 30 0 0 10167 97.3%
Antiair 0 3 62 154 2193 8024 0 0 10436 76.9%

Exp 169 0 4 46 2 39 15203 0 15463 98.3%
Turtle 0 399 1357 383 209 48 0 12576 14972 84.0%
Totals 14796 10782 12418 10025 13892 8158 15311 13408

CA 98.9% 88.4% 83.8% 89.8% 71.2% 98.4% 99.3% 93.8% 90.3%

Table B.20: Confusion Matrix for Experiment: Econ – None – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15619 0 0 0 0 0 0 0 15619 100.0%
TR 1 18217 0 0 4 0 0 16 18238 99.9%

Blitz 0 13 18335 7 446 0 0 44 18845 97.3%
Artil 0 8 24 24127 44 37 0 307 24547 98.3%

Bomber 0 26 0 0 11354 0 0 0 11380 99.8%
Antiair 0 2 0 0 1025 11556 0 0 12583 91.8%

Exp 105 0 0 1 14 24 25666 0 25810 99.4%
Turtle 0 0 95 72 39 2 0 25722 25930 99.2%
Totals 15725 18266 18454 24207 12926 11619 25666 26089

CA 99.3% 99.7% 99.4% 99.7% 87.8% 99.5% 100.0% 98.6% 98.5%

Table B.21: Confusion Matrix for Experiment: Econ – None – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19434 24 0 0 0 0 1 0 19459 99.9%
TR 14 22601 0 0 51 0 0 138 22804 99.1%

Blitz 0 16 23188 9 686 0 0 36 23935 96.9%
Artil 7 18 86 28083 343 23 0 360 28920 97.1%

Bomber 21 5 81 0 13756 0 0 0 13863 99.2%
Antiair 32 0 84 0 1269 14874 0 0 16259 91.5%

Exp 31 26 2 23 19 16 34167 0 34284 99.7%
Turtle 0 7 3 313 302 1 0 29946 30572 98.0%
Totals 19539 22697 23444 28428 16426 14914 34168 30480

CA 99.5% 99.6% 98.9% 98.8% 83.7% 99.7% 100.0% 98.2% 97.9%

112

Table B.22: Confusion Matrix for Experiment: Econ – PCA – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14800 0 0 0 1 0 0 0 14801 100.0%
TR 27 9289 13 594 1 5 0 0 9929 93.6%

Blitz 112 849 9631 540 259 190 0 392 11973 80.4%
Artil 53 737 479 9343 178 72 0 187 11049 84.6%

Bomber 202 74 117 31 9043 699 0 1 10167 88.9%
Antiair 245 78 112 117 2897 6982 0 5 10436 66.9%

Exp 1393 2 11 42 6 9 13995 5 15463 90.5%
Turtle 60 659 2320 717 90 56 0 11070 14972 73.9%
Totals 16892 11688 12683 11384 12475 8013 13995 11660

CA 87.6% 79.5% 75.9% 82.1% 72.5% 87.1% 100.0% 94.9% 85.2%

Table B.23: Confusion Matrix for Experiment: Econ – PCA – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15560 53 0 0 1 2 3 0 15619 99.6%
TR 13 18179 3 2 40 0 0 1 18238 99.7%

Blitz 0 387 17110 398 77 106 0 767 18845 90.8%
Artil 0 135 451 23727 34 95 0 105 24547 96.7%

Bomber 7 65 276 0 10456 576 0 0 11380 91.9%
Antiair 1 13 269 0 1846 10454 0 0 12583 83.1%

Exp 1361 2 10 0 20 48 24369 0 25810 94.4%
Turtle 0 180 1044 254 8 42 0 24402 25930 94.1%
Totals 16942 19014 19163 24381 12482 11323 24372 25275

CA 91.8% 95.6% 89.3% 97.3% 83.8% 92.3% 100.0% 96.5% 94.3%

Table B.24: Confusion Matrix for Experiment: Econ – PCA – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19277 28 0 0 0 0 154 0 19459 99.1%
TR 7 22631 1 0 38 11 0 116 22804 99.2%

Blitz 0 453 22566 62 207 195 0 452 23935 94.3%
Artil 7 316 820 27007 123 120 0 527 28920 93.4%

Bomber 0 42 324 1 12545 951 0 0 13863 90.5%
Antiair 43 38 331 21 2686 13140 0 0 16259 80.8%

Exp 979 48 8 13 14 51 33171 0 34284 96.8%
Turtle 0 169 1267 679 83 63 0 28311 30572 92.6%
Totals 20313 23725 25317 27783 15696 14531 33325 29406

CA 94.9% 95.4% 89.1% 97.2% 79.9% 90.4% 99.5% 96.3% 94.0%

113

Table B.25: Confusion Matrix for Experiment: Econ – PCA – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14673 0 0 9 57 0 62 0 14801 99.1%
TR 0 9198 26 260 145 3 0 297 9929 92.6%

Blitz 0 212 10043 132 893 80 0 613 11973 83.9%
Artil 0 345 266 9011 440 233 0 754 11049 81.6%

Bomber 0 0 55 127 9200 785 0 0 10167 90.5%
Antiair 0 0 41 150 1922 8321 0 2 10436 79.7%

Exp 233 0 1 25 2 54 15148 0 15463 98.0%
Turtle 0 294 232 130 160 130 0 14026 14972 93.7%
Totals 14906 10049 10664 9844 12819 9606 15210 15692

CA 98.4% 91.5% 94.2% 91.5% 71.8% 86.6% 99.6% 89.4% 90.7%

Table B.26: Confusion Matrix for Experiment: Econ – PCA – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15617 0 0 0 2 0 0 0 15619 100.0%
TR 0 18220 0 0 1 1 0 16 18238 99.9%

Blitz 0 20 18329 0 443 0 0 53 18845 97.3%
Artil 0 5 23 24160 52 26 0 281 24547 98.4%

Bomber 0 52 0 0 11320 8 0 0 11380 99.5%
Antiair 0 12 0 1 1160 11410 0 0 12583 90.7%

Exp 63 0 0 0 15 7 25725 0 25810 99.7%
Turtle 0 0 15 160 39 0 0 25716 25930 99.2%
Totals 15680 18309 18367 24321 13032 11452 25725 26066

CA 99.6% 99.5% 99.8% 99.3% 86.9% 99.6% 100.0% 98.7% 98.4%

Table B.27: Confusion Matrix for Experiment: Econ – PCA – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19310 23 0 0 0 0 126 0 19459 99.2%
TR 10 22595 0 0 0 51 0 148 22804 99.1%

Blitz 0 16 23129 4 742 16 0 28 23935 96.6%
Artil 7 14 69 28109 321 44 0 356 28920 97.2%

Bomber 12 1 0 1 13754 95 0 0 13863 99.2%
Antiair 43 3 0 6 1976 14231 0 0 16259 87.5%

Exp 23 18 1 5 1 56 34180 0 34284 99.7%
Turtle 0 0 4 230 277 27 3 30031 30572 98.2%
Totals 19405 22670 23203 28355 17071 14520 34309 30563

CA 99.5% 99.7% 99.7% 99.1% 80.6% 98.0% 99.6% 98.3% 97.5%

114

Table B.28: Confusion Matrix for Experiment: Econ – LDA – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14669 1 0 11 27 0 93 0 14801 99.1%
TR 3 9569 111 147 28 2 0 69 9929 96.4%

Blitz 57 415 10344 247 255 83 0 572 11973 86.4%
Artil 33 596 442 9393 96 58 1 430 11049 85.0%

Bomber 70 123 160 35 8789 909 1 80 10167 86.4%
Antiair 94 65 157 136 1744 8126 1 113 10436 77.9%

Exp 359 4 7 15 6 7 15044 21 15463 97.3%
Turtle 58 573 647 466 70 58 0 13100 14972 87.5%
Totals 15343 11346 11868 10450 11015 9243 15140 14385

CA 95.6% 84.3% 87.2% 89.9% 79.8% 87.9% 99.4% 91.1% 90.1%

Table B.29: Confusion Matrix for Experiment: Econ – LDA – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15568 17 0 1 0 0 29 4 15619 99.7%
TR 20 18183 0 1 0 0 12 22 18238 99.7%

Blitz 0 133 17784 22 1 110 5 790 18845 94.4%
Artil 5 175 176 23856 4 8 44 279 24547 97.2%

Bomber 0 0 3 11 10811 542 7 6 11380 95.0%
Antiair 11 2 5 22 688 11827 27 1 12583 94.0%

Exp 198 9 2 6 1 4 25573 17 25810 99.1%
Turtle 2 535 745 264 0 12 4 24368 25930 94.0%
Totals 15804 19054 18715 24183 11505 12503 25701 25487

CA 98.5% 95.4% 95.0% 98.6% 94.0% 94.6% 99.5% 95.6% 96.7%

Table B.30: Confusion Matrix for Experiment: Econ – LDA – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19430 0 0 26 0 0 2 1 19459 99.9%
TR 9 22663 10 12 3 0 2 105 22804 99.4%

Blitz 0 166 22344 138 209 466 5 607 23935 93.4%
Artil 19 326 245 27700 78 79 27 446 28920 95.8%

Bomber 26 9 8 83 13359 346 1 31 13863 96.4%
Antiair 6 8 12 79 1065 15028 10 51 16259 92.4%

Exp 175 27 9 13 17 0 34037 6 34284 99.3%
Turtle 0 618 1206 777 8 59 10 27894 30572 91.2%
Totals 19665 23817 23834 28828 14739 15978 34094 29141

CA 98.8% 95.2% 93.7% 96.1% 90.6% 94.1% 99.8% 95.7% 96.0%

115

Table B.31: Confusion Matrix for Experiment: Econ – LDA – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14641 0 0 4 32 1 123 0 14801 98.9%
TR 0 9524 65 287 25 0 13 15 9929 95.9%

Blitz 10 137 10683 482 146 138 135 242 11973 89.2%
Artil 1 235 287 9717 106 83 230 390 11049 87.9%

Bomber 20 28 150 150 8853 896 68 2 10167 87.1%
Antiair 10 12 69 121 1164 8757 284 19 10436 83.9%

Exp 131 2 7 46 1 3 15270 3 15463 98.8%
Turtle 13 115 228 727 33 47 879 12930 14972 86.4%
Totals 14826 10053 11489 11534 10360 9925 17002 13601

CA 98.8% 94.7% 93.0% 84.2% 85.5% 88.2% 89.8% 95.1% 91.5%

Table B.32: Confusion Matrix for Experiment: Econ – LDA – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15338 0 0 202 0 0 33 46 15619 98.2%
TR 0 18194 0 11 0 0 0 33 18238 99.8%

Blitz 0 0 18238 341 1 0 0 265 18845 96.8%
Artil 0 5 32 24337 1 8 8 156 24547 99.1%

Bomber 0 0 0 519 10281 414 0 166 11380 90.3%
Antiair 0 0 0 185 381 11403 2 612 12583 90.6%

Exp 27 0 0 478 0 8 25158 139 25810 97.5%
Turtle 0 0 44 483 0 0 0 25403 25930 98.0%
Totals 15365 18199 18314 26556 10664 11833 25201 26820

CA 99.8% 100.0% 99.6% 91.6% 96.4% 96.4% 99.8% 94.7% 97.0%

Table B.33: Confusion Matrix for Experiment: Econ – LDA – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19207 0 0 17 0 0 32 203 19459 98.7%
TR 4 22719 0 18 0 0 26 37 22804 99.6%

Blitz 0 0 23187 35 27 70 0 616 23935 96.9%
Artil 0 6 34 28186 2 8 11 673 28920 97.5%

Bomber 4 0 97 7 12844 382 14 515 13863 92.6%
Antiair 0 0 102 12 599 14382 1 1163 16259 88.5%

Exp 13 0 0 44 3 1 33600 623 34284 98.0%
Turtle 0 0 10 565 2 0 0 29995 30572 98.1%
Totals 19228 22725 23430 28884 13477 14843 33684 33825

CA 99.9% 100.0% 99.0% 97.6% 95.3% 96.9% 99.8% 88.7% 96.9%

116

Table B.34: Confusion Matrix for Experiment: No Econ – None – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14759 0 0 34 0 0 8 0 14801 99.7%
TR 2 9442 25 460 0 0 0 0 9929 95.1%

Blitz 129 802 9832 443 416 121 0 230 11973 82.1%
Artil 51 935 422 9313 121 12 0 195 11049 84.3%

Bomber 171 80 278 72 9167 399 0 0 10167 90.2%
Antiair 126 27 266 213 2368 7436 0 0 10436 71.3%

Exp 1193 15 0 52 4 0 14195 4 15463 91.8%
Turtle 64 643 1879 585 118 21 0 11662 14972 77.9%
Totals 16495 11944 12702 11172 12194 7989 14203 12091

CA 89.5% 79.1% 77.4% 83.4% 75.2% 93.1% 99.9% 96.5% 86.9%

Table B.35: Confusion Matrix for Experiment: No Econ – None – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15590 29 0 0 0 0 0 0 15619 99.8%
TR 0 18238 0 0 0 0 0 0 18238 100.0%

Blitz 0 543 18043 0 89 0 0 170 18845 95.7%
Artil 0 352 289 23704 12 16 0 174 24547 96.6%

Bomber 2 4 352 0 11022 0 0 0 11380 96.9%
Antiair 6 24 366 0 852 11335 0 0 12583 90.1%

Exp 993 56 12 0 0 6 24743 0 25810 95.9%
Turtle 0 482 795 129 0 29 0 24495 25930 94.5%
Totals 16591 19728 19857 23833 11975 11386 24743 24839

CA 94.0% 92.4% 90.9% 99.5% 92.0% 99.6% 100.0% 98.6% 96.2%

117

Table B.36: Confusion Matrix for Experiment: No Econ – None – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19427 32 0 0 0 0 0 0 19459 99.8%
TR 12 22792 0 0 0 0 0 0 22804 99.9%

Blitz 0 747 22868 9 307 0 0 4 23935 95.5%
Artil 27 625 505 27171 130 5 0 457 28920 94.0%

Bomber 32 12 464 0 13251 104 0 0 13863 95.6%
Antiair 16 7 456 9 1088 14672 0 11 16259 90.2%

Exp 1173 87 18 15 0 0 32959 32 34284 96.1%
Turtle 0 600 690 719 124 3 0 28436 30572 93.0%
Totals 20687 24902 25001 27923 14900 14784 32959 28940

CA 93.9% 91.5% 91.5% 97.3% 88.9% 99.2% 100.0% 98.3% 95.5%

Table B.37: Confusion Matrix for Experiment: No Econ – None – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14607 0 0 9 57 0 128 0 14801 98.7%
TR 0 9523 11 163 203 0 0 29 9929 95.9%

Blitz 0 361 10272 27 1057 0 0 256 11973 85.8%
Artil 0 537 476 8859 669 26 0 482 11049 80.2%

Bomber 0 0 11 165 9991 0 0 0 10167 98.3%
Antiair 0 0 6 140 2267 8023 0 0 10436 76.9%

Exp 161 0 0 31 6 39 15226 0 15463 98.5%
Turtle 0 430 1364 40 241 54 0 12843 14972 85.8%
Totals 14768 10851 12140 9434 14491 8142 15354 13610

CA 98.9% 87.8% 84.6% 93.9% 68.9% 98.5% 99.2% 94.4% 90.4%

Table B.38: Confusion Matrix for Experiment: No Econ – None – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15619 0 0 0 0 0 0 0 15619 100.0%
TR 26 18075 0 0 137 0 0 0 18238 99.1%

Blitz 0 12 18370 6 446 0 0 11 18845 97.5%
Artil 2 233 29 24078 53 57 0 95 24547 98.1%

Bomber 0 0 0 0 11380 0 0 0 11380 100.0%
Antiair 7 1 0 0 1030 11545 0 0 12583 91.8%

Exp 131 1 0 0 8 19 25651 0 25810 99.4%
Turtle 0 314 718 150 39 7 0 24702 25930 95.3%
Totals 15785 18636 19117 24234 13093 11628 25651 24808

CA 98.9% 97.0% 96.1% 99.4% 86.9% 99.3% 100.0% 99.6% 97.7%

118

Table B.39: Confusion Matrix for Experiment: No Econ – None – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19416 0 0 0 43 0 0 0 19459 99.8%
TR 13 22660 2 0 129 0 0 0 22804 99.4%

Blitz 0 4 23147 11 758 0 0 15 23935 96.7%
Artil 16 255 77 28008 378 9 0 177 28920 96.8%

Bomber 30 0 0 0 13833 0 0 0 13863 99.8%
Antiair 19 0 0 0 1340 14900 0 0 16259 91.6%

Exp 34 0 0 20 42 15 34173 0 34284 99.7%
Turtle 0 323 0 243 304 1 0 29701 30572 97.2%
Totals 19528 23242 23226 28282 16827 14925 34173 29893

CA 99.4% 97.5% 99.7% 99.0% 82.2% 99.8% 100.0% 99.4% 97.8%

Table B.40: Confusion Matrix for Experiment: No Econ – PCA – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14768 0 0 0 33 0 0 0 14801 99.8%
TR 1 9535 96 256 26 15 0 0 9929 96.0%

Blitz 95 1122 8738 491 662 59 0 806 11973 73.0%
Artil 30 958 379 9220 239 22 0 201 11049 83.4%

Bomber 133 41 91 55 9672 175 0 0 10167 95.1%
Antiair 126 13 103 65 2957 7168 0 4 10436 68.7%

Exp 1482 0 1 12 18 0 13903 47 15463 89.9%
Turtle 49 764 1931 581 109 27 0 11511 14972 76.9%
Totals 16684 12433 11339 10680 13716 7466 13903 12569

CA 88.5% 76.7% 77.1% 86.3% 70.5% 96.0% 100.0% 91.6% 85.6%

Table B.41: Confusion Matrix for Experiment: No Econ – PCA – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15619 0 0 0 0 0 0 0 15619 100.0%
TR 0 18177 39 0 7 15 0 0 18238 99.7%

Blitz 0 689 17719 0 176 0 0 261 18845 94.0%
Artil 0 568 131 23616 41 52 0 139 24547 96.2%

Bomber 6 9 263 0 11102 0 0 0 11380 97.6%
Antiair 9 6 272 0 970 11326 0 0 12583 90.0%

Exp 1119 9 5 0 23 6 24648 0 25810 95.5%
Turtle 0 561 774 54 16 67 0 24458 25930 94.3%
Totals 16753 20019 19203 23670 12335 11466 24648 24858

CA 93.2% 90.8% 92.3% 99.8% 90.0% 98.8% 100.0% 98.4% 95.9%

119

Table B.42: Confusion Matrix for Experiment: No Econ – PCA – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19427 32 0 0 0 0 0 0 19459 99.8%
TR 14 22721 17 0 33 19 0 0 22804 99.6%

Blitz 0 707 22735 10 303 180 0 0 23935 95.0%
Artil 23 650 481 27106 186 137 0 337 28920 93.7%

Bomber 39 14 268 0 13314 228 0 0 13863 96.0%
Antiair 47 5 262 39 1222 14682 0 2 16259 90.3%

Exp 1767 41 5 33 33 22 32383 0 34284 94.5%
Turtle 0 658 1417 663 177 130 0 27527 30572 90.0%
Totals 21317 24828 25185 27851 15268 15398 32383 27866

CA 91.1% 91.5% 90.3% 97.3% 87.2% 95.4% 100.0% 98.8% 94.6%

Table B.43: Confusion Matrix for Experiment: No Econ – PCA – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14628 0 0 0 57 9 107 0 14801 98.8%
TR 0 9132 345 0 364 1 0 87 9929 92.0%

Blitz 0 383 10178 1 1054 10 0 347 11973 85.0%
Artil 0 374 759 8821 653 47 0 395 11049 79.8%

Bomber 0 0 61 0 9876 230 0 0 10167 97.1%
Antiair 0 0 47 92 2250 8045 0 2 10436 77.1%

Exp 228 0 5 1 6 70 15151 2 15463 98.0%
Turtle 0 294 1459 22 187 134 0 12876 14972 86.0%
Totals 14856 10183 12854 8937 14447 8546 15258 13709

CA 98.5% 89.7% 79.2% 98.7% 68.4% 94.1% 99.3% 93.9% 89.8%

Table B.44: Confusion Matrix for Experiment: No Econ – PCA – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15619 0 0 0 0 0 0 0 15619 100.0%
TR 22 18066 0 0 32 118 0 0 18238 99.1%

Blitz 0 419 17980 0 446 0 0 0 18845 95.4%
Artil 0 222 30 24112 54 41 0 88 24547 98.2%

Bomber 6 0 0 0 11374 0 0 0 11380 99.9%
Antiair 6 0 0 0 1013 11564 0 0 12583 91.9%

Exp 76 0 0 0 0 9 25725 0 25810 99.7%
Turtle 0 311 711 107 33 8 0 24760 25930 95.5%
Totals 15729 19018 18721 24219 12952 11740 25725 24848

CA 99.3% 95.0% 96.0% 99.6% 87.8% 98.5% 100.0% 99.6% 97.5%

120

Table B.45: Confusion Matrix for Experiment: No Econ – PCA – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19416 0 0 0 2 41 0 0 19459 99.8%
TR 17 22660 2 0 60 65 0 0 22804 99.4%

Blitz 0 74 22723 18 757 3 0 360 23935 94.9%
Artil 12 255 36 27993 378 19 0 227 28920 96.8%

Bomber 31 0 0 0 13818 14 0 0 13863 99.7%
Antiair 32 0 0 0 1460 14767 0 0 16259 90.8%

Exp 29 0 0 0 4 72 34179 0 34284 99.7%
Turtle 0 319 0 212 304 1 0 29736 30572 97.3%
Totals 19537 23308 22761 28223 16783 14982 34179 30323

CA 99.4% 97.2% 99.8% 99.2% 82.3% 98.6% 100.0% 98.1% 97.5%

Table B.46: Confusion Matrix for Experiment: No Econ – LDA – Knn on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14673 0 11 0 20 0 97 0 14801 99.1%
TR 0 9699 70 101 27 0 0 32 9929 97.7%

Blitz 59 551 10051 282 552 2 0 476 11973 83.9%
Artil 28 768 264 9420 127 0 0 442 11049 85.3%

Bomber 104 87 331 37 8883 643 0 82 10167 87.4%
Antiair 105 62 374 88 1917 7832 0 58 10436 75.0%

Exp 395 9 0 5 0 0 15015 39 15463 97.1%
Turtle 58 831 461 553 60 60 0 12949 14972 86.5%
Totals 15422 12007 11562 10486 11586 8537 15112 14078

CA 95.1% 80.8% 86.9% 89.8% 76.7% 91.7% 99.4% 92.0% 89.6%

Table B.47: Confusion Matrix for Experiment: No Econ – LDA – Knn on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15594 0 0 0 0 0 25 0 15619 99.8%
TR 1 18179 0 0 0 0 22 36 18238 99.7%

Blitz 0 115 17891 153 353 1 0 332 18845 94.9%
Artil 3 232 262 23692 9 49 4 296 24547 96.5%

Bomber 0 3 90 0 10714 572 0 1 11380 94.1%
Antiair 10 16 91 5 706 11740 4 11 12583 93.3%

Exp 370 7 0 5 0 8 25415 5 25810 98.5%
Turtle 2 699 607 181 0 44 0 24397 25930 94.1%
Totals 15980 19251 18941 24036 11782 12414 25470 25078

CA 97.6% 94.4% 94.5% 98.6% 90.9% 94.6% 99.8% 97.3% 96.5%

121

Table B.48: Confusion Matrix for Experiment: No Econ – LDA – Knn on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19430 26 0 0 0 0 3 0 19459 99.9%
TR 10 22773 0 21 0 0 0 0 22804 99.9%

Blitz 1 139 22801 14 273 1 0 706 23935 95.3%
Artil 40 269 210 27468 22 11 3 897 28920 95.0%

Bomber 27 20 410 0 13108 202 0 96 13863 94.6%
Antiair 7 7 421 1 890 14826 12 95 16259 91.2%

Exp 179 27 5 6 0 0 34042 25 34284 99.3%
Turtle 6 555 968 450 0 2 4 28587 30572 93.5%
Totals 19700 23816 24815 27960 14293 15042 34064 30406

CA 98.6% 95.6% 91.9% 98.2% 91.7% 98.6% 99.9% 94.0% 96.3%

Table B.49: Confusion Matrix for Experiment: No Econ – LDA – SVM on Small Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 14619 0 0 12 45 0 125 0 14801 98.8%
TR 0 9493 32 354 26 0 15 9 9929 95.6%

Blitz 6 190 10122 491 405 340 94 325 11973 84.5%
Artil 0 374 278 9590 128 51 64 564 11049 86.8%

Bomber 28 36 86 223 9001 728 64 1 10167 88.5%
Antiair 11 9 66 197 1373 8491 247 42 10436 81.4%

Exp 169 3 1 47 0 2 15237 4 15463 98.5%
Turtle 0 206 183 662 56 31 222 13612 14972 90.9%
Totals 14833 10311 10768 11576 11034 9643 16068 14557

CA 98.6% 92.1% 94.0% 82.8% 81.6% 88.1% 94.8% 93.5% 91.3%

Table B.50: Confusion Matrix for Experiment: No Econ – LDA – SVM on Medium Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 15535 0 0 82 0 0 2 0 15619 99.5%
TR 0 18195 0 15 0 20 0 8 18238 99.8%

Blitz 0 4 17996 421 171 184 0 69 18845 95.5%
Artil 0 16 24 24198 2 14 7 286 24547 98.6%

Bomber 0 1 91 395 10709 184 0 0 11380 94.1%
Antiair 0 14 91 547 738 11191 1 1 12583 88.9%

Exp 90 7 0 394 0 14 25305 0 25810 98.0%
Turtle 0 0 50 555 0 0 0 25325 25930 97.7%
Totals 15625 18237 18252 26607 11620 11607 25315 25689

CA 99.4% 99.8% 98.6% 90.9% 92.2% 96.4% 100.0% 98.6% 97.1%

122

Table B.51: Confusion Matrix for Experiment: No Econ – LDA – SVM on Large Map

Predicted
IR TR Blitz Artil Bomber Antiair Exp Turtle Samples PA

IR 19336 0 0 49 18 23 5 28 19459 99.4%
TR 5 22766 0 30 0 0 3 0 22804 99.8%

Blitz 0 0 22966 556 275 0 0 138 23935 96.0%
Artil 7 17 16 28464 1 0 7 408 28920 98.4%

Bomber 14 0 412 207 12963 9 0 258 13863 93.5%
Antiair 5 1 401 540 833 14009 0 470 16259 86.2%

Exp 30 7 0 328 0 3 33629 287 34284 98.1%
Turtle 0 0 5 882 0 0 0 29685 30572 97.1%
Totals 19397 22791 23800 31056 14090 14044 33644 31274

CA 99.7% 99.9% 96.5% 91.7% 92.0% 99.8% 100.0% 94.9% 96.7%

123

B.4 Accuracy Over Time

Figures B.1 through B.12 plot the accuracy over time of the experiments for each of

the 12 combinations of data set, feature reduction technique, and classifier.

Figure B.1: Accuracy over Time for Experiment: Econ – None – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

124

Figure B.2: Accuracy over Time for Experiment: Econ – None – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

Figure B.3: Accuracy over Time for Experiment: Econ – PCA – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

125

Figure B.4: Accuracy over Time for Experiment: Econ – PCA – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

Figure B.5: Accuracy over Time for Experiment: Econ – LDA – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

126

Figure B.6: Accuracy over Time for Experiment: Econ – LDA – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

Figure B.7: Accuracy over Time for Experiment: No Econ – None – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

127

Figure B.8: Accuracy over Time for Experiment: No Econ – None – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

Figure B.9: Accuracy over Time for Experiment: No Econ – PCA – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

128

Figure B.10: Accuracy over Time for Experiment: No Econ – PCA – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

Figure B.11: Accuracy over Time for Experiment: No Econ – LDA – Knn

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

129

Figure B.12: Accuracy over Time for Experiment: No Econ – LDA – SVM

5 10 15 20 25 30 35
time (minutes)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Small Map
Medium Map
Large Map

130

Bibliography

[1] Aha, David W., Matthew Molineaux, and Marc Ponsen. “Learning to win:
Case-based plan selection in a real-time strategy game”. in Proceedings of the Sixth
International Conference on Case-Based Reasoning, 5–20. Springer, 2005.

[2] Association for the Advancement of Artificial Intelligence (AAAI). “AIIDE 2011:
AI and Interactive Digital Entertainment Conference Accepted Papers”, 2011. URL
http://www.movingai.com/aiide11/papers.html. [Online; accessed 24-Oct-2011].

[3] Bakkes, S and P Spronck. “Phase-dependent evaluation in RTS games”.
Proceedings of the 19th Belgian-Dutch Conference on Artificial Intelligence, 2007.

[4] Bakkes, S, P Spronck, and J Van Den Herik. “Rapid and Reliable Adaptation of
Video Game AI”. IEEE Transactions on Computational Intelligence and AI in
Games, 1(2):93–104, 2009.

[5] Bakkes, Sander C. J., Pieter H. M. Spronck, and H. Jaap van den Herik. “Opponent
modelling for case-based adaptive game AI”. Entertainment Computing, 1(1):27–37,
January 2009. ISSN 18759521.

[6] Balla, Radha-Krishna and Alan Fern. “UCT for tactical assault planning in real-time
strategy games”. Proceedings of the 21st international jont conference on Artifical
intelligence, IJCAI’09, 40–45. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2009.

[7] Barr, Richard S., Bruce L. Golden, James P. Kelly, Mauricio G. C, Resende William,
and R. Stewart. “Designing and reporting on computational experiments with
heuristic methods”. Journal of Heuristics, 1:9–32, 1995.

[8] Buro, Michael. “Call for AI research in RTS games”. In Proceedings of the AAAI
Workshop on AI in Games, 139–141. AAAI Press, 2004.

[9] Buro, Michael. “ORTS - A Free Software RTS Game Engine”, 2011. URL
http://skatgame.net/mburo/orts. [Online; accessed 24-Oct-2011].

[10] Buro, Michael; University of Alberta. “The 2nd Annual AIIDE Starcraft AI
Competition”, 2011. URL http://skat.dnsalias.net/mburo/sc2011/. [Online; accessed
24-Oct-2011].

[11] Caffrey, Jr., Matthew. “Toward a History-Based Doctrine for Wargaming”.
Aerospace Power Journal, XIV:33–56, 2000.

[12] Chung, Michael, Michael Buro, and Jonathan Schaeffer. “Monte Carlo Planning in
RTS Games”. In CIG 2005 Colchester UK, 117–124, 2005.

131

[13] Cortes, Corinna and Vladimir Vapnik. “Support-vector networks”. Machine
Learning, 20(3):273–297, 1995. URL
http://www.springerlink.com/index/10.1007/BF00994018.

[14] Duda, R.O., P.E. Hart, and D.G. Stork. Pattern classification. Pattern Classification
and Scene Analysis: Pattern Classification. Wiley, second edition, 2000. ISBN
9780471056690.

[15] Enthought, Inc. “SciPy”, 2011. URL http://www.scipy.org. [Online; accessed
24-Oct-2011].

[16] Gomaa, Hassan. Designing Concurrent, Distributed, and Real-time Applications
with UML. Addison Wesley, 2000.

[17] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.
Springer New York Inc., New York, NY, USA, second edition, 2009.

[18] Heinermann, Adam. “bwapi — An API for interacting with Starcraft: Broodwar
(1.16.1) — Google Project Hosting”, 2011. URL https://code.google.com/p/bwapi.
[Online; accessed 24-Oct-2011].

[19] IT University Copenhagen, Denmark. “CIG 2010 Accepted Papers”, 2010. URL
http://game.itu.dk/cig2010/?page id=715. [Online; accessed 24-Oct-2011].

[20] Laird, John E. “Using a Computer Game to Develop Advanced AI”. Computer,
34(7):70–75, July 2001. ISSN 0018-9162.

[21] Laird, John E. and Michael van Lent. “Human-Level AI’s Killer Application:
Interactive Computer Games”. Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence, 1171–1178. AAAI Press, 2000. ISBN 0-262-51112-6.

[22] Laviers, Kennard and Gita Sukthankar. “A Real-Time Opponent Modeling System
for Rush Football”. International Joint Conference on Artificial Intelligence (IJCAI),
2476–2481. 2011.

[23] Laviers, Kennard, Gita Sukthankar, David W. Aha, and Matthew Molineaux.
“Improving Offensive Performance Through Opponent Modeling”. Artificial
Intelligence and Interactive Digital Entertainment (AIIDE). 2009.

[24] Mahlmann, Tobias; IT University Copenhagen. “CIG 2011 StarCraft RTS AI
Competition”, 2011. URL
http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft%-cig2011. [Online;
accessed 17-May-2012].

132

[25] McCoy, Josh and Michael Mateas. “An integrated agent for playing real-time
strategy games”. Proceedings of the 23rd national conference on Artificial
intelligence - Volume 3, 1313–1318. AAAI Press, 2008. ISBN 978-1-57735-368-3.
URL www.aaai.org/Papers/AAAI/2008/AAAI08-208.pdf.

[26] Numpy developers. “Scientific Computing Tools For Python — Numpy”, 2011.
URL http://numpy.scipy.org. [Online; accessed 24-Oct-2011].

[27] Obradovic, Darko and Armin Stahl. “Learning by Observing: Case-Based Decision
Making in Complex Strategy Games”. Proceedings of the 31th Annual German
Conference on Artificial Intelligence. Springer, 9 2008.

[28] Ponsen, Marc J. V., Héctor Muñoz Avila, Pieter Spronck, and David W. Aha.
“Automatically acquiring domain knowledge for adaptive game AI using
evolutionary learning”. Proceedings of the 17th conference on Innovative
applications of artificial intelligence - Volume 3, IAAI’05, 1535–1540. AAAI Press,
2005. ISBN 1-57735-236-x.

[29] Ponsen, Marc J. V., Héctor Muñoz-Avila, Pieter Spronck, and David W. Aha.
“Automatically Generating Game Tactics through Evolutionary Learning”. AI
Magazine, 27(3):75–84, 2006. URL
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1894.

[30] Ponsen, Marc J. V. and Pieter Spronck. “Improving Adaptive Game AI with
Evolutionary Learning”. Proceedings of Computer Games: Artificial Intelligence,
Design and Education (CGAIDE-04), 389–396. University of Wolverhampton,
England, 2004.

[31] Python Developers. “Generators — PythonInfo Wiki”, 2011. URL
http://wiki.python.org/moin/Generators. [Online; accessed 24-Oct-2011].

[32] Python Software Foundation. “15.17. ctypes A foreign function library for Python
— Python v2.7.3 documentation”, 2011. URL
http://docs.python.org/library/ctypes.html. [Online; accessed 24-Oct-2011].

[33] Rosen, Kenneth H. Discrete Mathematics And Its Applications. Discrete
Mathematics and Its Applications. McGraw-Hill Higher Education, sixth edition,
2006. ISBN 9780073229720.

[34] Russell, S.J. and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Series in Artificial Intelligence. Prentice Hall, third edition, 2010. ISBN
9780136042594.

[35] Schadd, Frederik, Sander Bakkes, and Pieter Spronck. “Opponent modeling in
real-time strategy games”. Games and Simulation GAMEON, 3(71):61–68, 2007.
URL http://ticc.uvt.nl/∼pspronck/pubs/SchaddBakkesSpronckGAMEON07.pdf.

133

[36] scikit-learn developers. “scikit-learn: machine learning in Python”, 2011. URL
http://scikit-learn.org. [Online; accessed 24-Oct-2011].

[37] Spronck, Pieter, Marc Ponsen, and Eric Postma. “Adaptive game AI with dynamic
scripting”. Machine Learning, 217–248. Kluwer, 2006.

[38] Sutton, Richard S. and Andrew G. Barto. Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press, March 1998. ISBN
0262193981.

[39] Synnaeve, Gabriel and Pierre Bessière. “A Bayesian model for opening prediction
in RTS games with application to StarCraft”. Computational Intelligence and Games
(CIG), 281–288. 2011.

[40] Synnaeve, Gabriel and Pierre Bessière. “A Bayesian Model for Plan Recognition in
RTS Games Applied to StarCraft”. Artificial Intelligence and Interactive Digital
Entertainment (AIIDE). 2011.

[41] Synnaeve, Gabriel and Pierre Bessière. “A Bayesian model for RTS units control
applied to StarCraft”. Computational Intelligence and Games (CIG), 190–196. 2011.

[42] The Spring Community. “Spring Engine”, 2011. URL http://www.springrts.com.
[Online; accessed 24-Oct-2011].

[43] The Spring Community. “Spring Engine Source Code (develop branch) — Github”,
2011. URL https://github.com/spring/spring. [Computer Program Source Code;
Online; accessed 24-Oct-2011].

[44] The Spring Community. “Spring Engine: Strategy and Tactics”, 2011. URL
http://springrts.com/wiki/Strategy and Tactics. [Online; accessed 24-Oct-2011].

[45] Van Der Heijden, Marcel, Sander Bakkes, and Pieter Spronck. “Dynamic
formations in real-time strategy games”. 2008 IEEE Symposium On Computational
Intelligence and Games, 47–54, 2008.

[46] van Rossum, Guido. “Python Programming Language — Official Website”, 2011.
URL http://www.python.org. [Online; accessed 24-Oct-2011].

[47] Weber, Ben G. and Michael Mateas. “Case-Based Reasoning for Build Order in
Real-Time Strategy Games”. Artificial Intelligence and Interactive Digital
Entertainment (AIIDE). 10/2009 2009.

[48] Weber, Ben G. and Michael Mateas. “Conceptual Neighborhoods for Retrieval in
Case-Based Reasoning”. ICCBR ’09: Proceedings of the 8th International
Conference on Case-Based Reasoning, 343–357. Springer-Verlag, Springer-Verlag,
Berlin, Heidelberg, 2009. ISBN 978-3-642-02997-4.

134

[49] Weijers, Stephan. Real-Time Strategy High-level Planning. Technical report,
University of Twente — Study Tour Pixel 2010, 2010.

[50] Weissgerber, Kurt. Developing an Effective and Efficient Real Time Strategy Agent
for Use as a Computer Generated Force. Master’s thesis, Air Force Institute of
Technology, 2010.

[51] Weissgerber, Kurt, Gary B. Lamont, Brett J. Borghetti, and Gilbert L. Peterson.
“Determining Solution Space Characteristics for Real-Time Strategy Games and
Characterizing Winning Strategies”. International Journal of Computer Games
Technology, 2011.

[52] Wikipedia. “Deep Blue (chess computer) — Wikipedia, the Free Encyclopedia”,
2011. URL http://en.wikipedia.org/wiki/Deep Blue %28chess computer%29.
[Online; accessed 24-Oct-2011].

[53] Wikipedia. “History of chess — Wikipedia, the Free Encyclopedia”, 2011. URL
http://en.wikipedia.org/wiki/History of chess. [Online; accessed 24-Oct-2011].

[54] Wikipedia. “Real-time strategy — Wikipedia, the Free Encyclopedia”, 2011. URL
http://en.wikipedia.org/wiki/Real-time strategy. [Online; accessed 24-Oct-2011].

[55] Wikipedia. “Watson (computer) — Wikipedia, the Free Encyclopedia”, 2011. URL
http://en.wikipedia.org/wiki/Watson %28computer%29. [Online; accessed
24-Oct-2011].

[56] Wikipedia. “Military simulation — Wikipedia, the Free Encyclopedia”, 2012. URL
http://en.wikipedia.org/wiki/Military simulation. [Online; accessed 17-May-2012].

135

Vita

Lyall Jonathan Di Trapani completed a B.S. and an M.Eng. in electrical engineering

at the University of Louisville in 2006 and 2007, respectively. Both degrees were awarded

with the highest honors. During his time at the University of Louisville, he earned the Air

Force ROTC Distinguished Graduate Award and the Samuel T. Fife Outstanding Master of

Engineering Graduate in Electrical Engineering Award. He is currently pursuing an M.S.

in computer science from the Air Force Institute of Technology. He has served in the US

Air Force as a communications engineer from 2007 to 2010. He is currently serving as a

cyberspace officer at the Air Force Institute of Technology.

136

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
14 June 2012

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Aug 2010 – 14 Jun 2012

4. TITLE AND SUBTITLE
A Real-time Strategy Agent Framework and Strategy Classifier for Computer Generated
Forces

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Di Trapani, Lyall J, Capt

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER
AFIT/GCS/ENG/12-04

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Intentionally Left Blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Distribution A. Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States
14. ABSTRACT
 This research effort is concerned with the advancement of computer generated forces AI for Department of Defense (DoD)
military training and education. The vision of this work is agents capable of perceiving and intelligently responding to
opponent strategies in real-time. Our research goal is to lay the foundations for such an agent. Six research objectives are
defined: 1) Formulate a strategy definition schema effective in defining a range of RTS strategies. 2) Create eight strategy
definitions via the schema. 3) Design a real-time agent framework that plays the game according to the given strategy
definition. 4) Generate an RTS data set. 5) Create an accurate and fast executing strategy classifier. 6) Find the best counter-
strategies for each strategy definition.
 The agent framework is used to play the eight strategies against each other and generate a data set of game observations. To
classify the data, we first perform feature reduction using principal component analysis or linear discriminant analysis. Two
classifier techniques are employed, k-means clustering with k-nearest neighbor and support vector machine. The resulting
classifier is 94.1% accurate with an average classification execution speed of 7.14 us. Our research effort has successfully laid
the foundations for a dynamic strategy agent.
15. SUBJECT TERMS
Real-time strategy, agent framework, strategy classification, Spring Engine

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT
UU

18. NUMBER
 OF
 PAGES
 154

19a. NAME OF RESPONSIBLE PERSON
Gary B. Lamont, Phd

REPORT
UU

ABSTRACT
UU

c. THIS PAGE
UU

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 x4718 gary.lamont@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	AFIT-GCS-ENG-12-04
	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Military Wargames and RTS Games
	Academic Interest in RTS Game AI
	Research Goal
	Research Objectives
	General Approach
	Thesis Overview

	Background in RTS Games
	Introduction
	Wargames
	RTS
	The Levels of RTS AI
	Definition of RTS Terms
	RTS AI Agent Problem Solving
	General RTS Strategies
	AI
	Chapter Summary

	Previous AI Approaches in RTS
	Introduction
	Reinforcement Learning
	Dynamic Scripting
	Monte-Carlo planning
	Case-based Planning and Reasoning
	Bayesian Networks
	Evolutionary Algorithm
	Modular, Integrated Agent
	Opponent Modeling
	Chapter Summary

	Agent Framework
	Introduction
	Strategic Constructs
	Making Strategic Decisions
	Groups Tactics
	Agent Architecture
	Constraints
	Advancement of AFIT Research in RTS AI
	Balanced Annihilation
	Chapter Summary

	Real-time Strategy Classification
	Introduction
	Data Collection
	Data Pre-processing
	Feature Reduction
	Building a Classifier
	Learning Counter-Strategies
	Chapter Summary

	Design of Experiments
	Introduction
	Wins-losses and Counter-strategies
	Classifier Testing using 5-Fold Cross-validation
	Classifier Accuracy
	Classifier Execution Speed
	Properties of Most Accurate Classifier and Fastest Executing Classifier
	Chapter Summary

	Results and Discussion
	Introduction
	Win-loss Results
	Counter-strategies
	Objective 1 Requirements
	Classifier Accuracy
	Classifier Execution Speed
	Properties of Most Accurate Classifier
	Properties of Fastest Executing Classifier
	Strategy Observation Fidelity
	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Final Remarks

	Appendix A: Sequence Diagrams
	Appendix B: Complete Experiment Results
	Win–loss
	Overall Accuracy
	Confusion Matrices
	Accuracy Over Time

	Bibliography
	Vita

	SF298

